These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1075 related articles for article (PubMed ID: 24115022)
1. The Warburg effect then and now: from cancer to inflammatory diseases. Palsson-McDermott EM; O'Neill LA Bioessays; 2013 Nov; 35(11):965-73. PubMed ID: 24115022 [TBL] [Abstract][Full Text] [Related]
2. PKM2 contributes to cancer metabolism. Wong N; Ojo D; Yan J; Tang D Cancer Lett; 2015 Jan; 356(2 Pt A):184-91. PubMed ID: 24508027 [TBL] [Abstract][Full Text] [Related]
3. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Lu J; Tan M; Cai Q Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809 [TBL] [Abstract][Full Text] [Related]
4. Succinate: a metabolic signal in inflammation. Mills E; O'Neill LA Trends Cell Biol; 2014 May; 24(5):313-20. PubMed ID: 24361092 [TBL] [Abstract][Full Text] [Related]
5. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines. Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416 [TBL] [Abstract][Full Text] [Related]
6. [Characterization of glycolytic phenotype of SHG44 human glioma cells under hypoxic conditions and its association with cell proliferation and apoptosis]. Xu G; Bai X; Wang M; Xie W; Li R; Li C Nan Fang Yi Ke Da Xue Xue Bao; 2013 Mar; 33(3):406-11. PubMed ID: 23529241 [TBL] [Abstract][Full Text] [Related]
7. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Weljie AM; Jirik FR Int J Biochem Cell Biol; 2011 Jul; 43(7):981-9. PubMed ID: 20797448 [TBL] [Abstract][Full Text] [Related]
9. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation. Li Y; Li YC; Liu XT; Zhang L; Chen YH; Zhao Q; Gao W; Liu B; Yang H; Li P Cell Rep; 2022 Feb; 38(7):110391. PubMed ID: 35172156 [TBL] [Abstract][Full Text] [Related]
10. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Vaupel P; Schmidberger H; Mayer A Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194 [TBL] [Abstract][Full Text] [Related]
11. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Yang L; Xie M; Yang M; Yu Y; Zhu S; Hou W; Kang R; Lotze MT; Billiar TR; Wang H; Cao L; Tang D Nat Commun; 2014 Jul; 5():4436. PubMed ID: 25019241 [TBL] [Abstract][Full Text] [Related]
13. GRP78 is implicated in the modulation of tumor aerobic glycolysis by promoting autophagic degradation of IKKβ. Li Z; Wang Y; Newton IP; Zhang L; Ji P; Li Z Cell Signal; 2015 Jun; 27(6):1237-45. PubMed ID: 25748049 [TBL] [Abstract][Full Text] [Related]
14. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Mills EL; Kelly B; Logan A; Costa ASH; Varma M; Bryant CE; Tourlomousis P; Däbritz JHM; Gottlieb E; Latorre I; Corr SC; McManus G; Ryan D; Jacobs HT; Szibor M; Xavier RJ; Braun T; Frezza C; Murphy MP; O'Neill LA Cell; 2016 Oct; 167(2):457-470.e13. PubMed ID: 27667687 [TBL] [Abstract][Full Text] [Related]
15. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Shi L; Salamon H; Eugenin EA; Pine R; Cooper A; Gennaro ML Sci Rep; 2015 Dec; 5():18176. PubMed ID: 26658723 [TBL] [Abstract][Full Text] [Related]
16. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Kauppinen A; Suuronen T; Ojala J; Kaarniranta K; Salminen A Cell Signal; 2013 Oct; 25(10):1939-48. PubMed ID: 23770291 [TBL] [Abstract][Full Text] [Related]
17. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169 [TBL] [Abstract][Full Text] [Related]
18. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Kelly B; O'Neill LA Cell Res; 2015 Jul; 25(7):771-84. PubMed ID: 26045163 [TBL] [Abstract][Full Text] [Related]
19. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Semba H; Takeda N; Isagawa T; Sugiura Y; Honda K; Wake M; Miyazawa H; Yamaguchi Y; Miura M; Jenkins DM; Choi H; Kim JW; Asagiri M; Cowburn AS; Abe H; Soma K; Koyama K; Katoh M; Sayama K; Goda N; Johnson RS; Manabe I; Nagai R; Komuro I Nat Commun; 2016 May; 7():11635. PubMed ID: 27189088 [TBL] [Abstract][Full Text] [Related]
20. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Tannahill GM; Curtis AM; Adamik J; Palsson-McDermott EM; McGettrick AF; Goel G; Frezza C; Bernard NJ; Kelly B; Foley NH; Zheng L; Gardet A; Tong Z; Jany SS; Corr SC; Haneklaus M; Caffrey BE; Pierce K; Walmsley S; Beasley FC; Cummins E; Nizet V; Whyte M; Taylor CT; Lin H; Masters SL; Gottlieb E; Kelly VP; Clish C; Auron PE; Xavier RJ; O'Neill LA Nature; 2013 Apr; 496(7444):238-42. PubMed ID: 23535595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]