These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24115169)

  • 21. Co-regulation in embryonic stem cells via context-dependent binding of transcription factors.
    Lee Y; Zhou Q
    Bioinformatics; 2013 Sep; 29(17):2162-8. PubMed ID: 23793746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models.
    Maaskola J; Rajewsky N
    Nucleic Acids Res; 2014 Dec; 42(21):12995-3011. PubMed ID: 25389269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DIME: R-package for identifying differential ChIP-seq based on an ensemble of mixture models.
    Taslim C; Huang T; Lin S
    Bioinformatics; 2011 Jun; 27(11):1569-70. PubMed ID: 21471015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probabilistic partitioning methods to find significant patterns in ChIP-Seq data.
    Nair NU; Kumar S; Moret BM; Bucher P
    Bioinformatics; 2014 Sep; 30(17):2406-13. PubMed ID: 24812341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracting sequence features to predict protein-DNA interactions: a comparative study.
    Zhou Q; Liu JS
    Nucleic Acids Res; 2008 Jul; 36(12):4137-48. PubMed ID: 18556756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data.
    Macisaac KD; Gordon DB; Nekludova L; Odom DT; Schreiber J; Gifford DK; Young RA; Fraenkel E
    Bioinformatics; 2006 Feb; 22(4):423-9. PubMed ID: 16332710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis.
    Rautio S; Lähdesmäki H
    BMC Bioinformatics; 2015 Dec; 16():413. PubMed ID: 26703974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collaborative Completion of Transcription Factor Binding Profiles via Local Sensitive Unified Embedding.
    Zhu L; Guo WL; Lu C; Huang DS
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):946-958. PubMed ID: 27845669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting differential peaks in ChIP-seq signals with ODIN.
    Allhoff M; Seré K; Chauvistré H; Lin Q; Zenke M; Costa IG
    Bioinformatics; 2014 Dec; 30(24):3467-75. PubMed ID: 25371479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
    Najafabadi HS; Albu M; Hughes TR
    Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct ChIP-Seq significance analysis improves target prediction.
    Bansal M; Mendiratta G; Anand S; Kushwaha R; Kim R; Kustagi M; Iyer A; Chaganti RS; Califano A; Sumazin P
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S4. PubMed ID: 26040656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flexible and powerful bayesian hierarchical model for ChIP-Chip experiments.
    Gottardo R; Li W; Johnson WE; Liu XS
    Biometrics; 2008 Jun; 64(2):468-78. PubMed ID: 17888037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites.
    Ramsey SA; Knijnenburg TA; Kennedy KA; Zak DE; Gilchrist M; Gold ES; Johnson CD; Lampano AE; Litvak V; Navarro G; Stolyar T; Aderem A; Shmulevich I
    Bioinformatics; 2010 Sep; 26(17):2071-5. PubMed ID: 20663846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ChIP-Seq data analysis: identification of protein-DNA binding sites with SISSRs peak-finder.
    Narlikar L; Jothi R
    Methods Mol Biol; 2012; 802():305-22. PubMed ID: 22130889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. JAMIE: A software tool for jointly analyzing multiple ChIP-chip experiments.
    Wu H; Ji H
    Methods Mol Biol; 2012; 802():363-75. PubMed ID: 22130893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Every transcription factor deserves its map: Scaling up epitope tagging of proteins to bypass antibody problems.
    Partridge EC; Watkins TA; Mendenhall EM
    Bioessays; 2016 Aug; 38(8):801-11. PubMed ID: 27311628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.