These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information. Osmanbeyoglu HU; Hartmaier RJ; Oesterreich S; Lu X BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S1. PubMed ID: 22369349 [TBL] [Abstract][Full Text] [Related]
44. De novo detection of differentially bound regions for ChIP-seq data using peaks and windows: controlling error rates correctly. Lun AT; Smyth GK Nucleic Acids Res; 2014 Jun; 42(11):e95. PubMed ID: 24852250 [TBL] [Abstract][Full Text] [Related]
45. Identification of transcription factor binding sites derived from transposable element sequences using ChIP-seq. Conley AB; Jordan IK Methods Mol Biol; 2010; 674():225-40. PubMed ID: 20827595 [TBL] [Abstract][Full Text] [Related]
46. coMOTIF: a mixture framework for identifying transcription factor and a coregulator motif in ChIP-seq data. Xu M; Weinberg CR; Umbach DM; Li L Bioinformatics; 2011 Oct; 27(19):2625-32. PubMed ID: 21775309 [TBL] [Abstract][Full Text] [Related]
47. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. van Heeringen SJ; Veenstra GJ Bioinformatics; 2011 Jan; 27(2):270-1. PubMed ID: 21081511 [TBL] [Abstract][Full Text] [Related]
49. MotifHyades: expectation maximization for de novo DNA motif pair discovery on paired sequences. Wong KC Bioinformatics; 2017 Oct; 33(19):3028-3035. PubMed ID: 28633280 [TBL] [Abstract][Full Text] [Related]
53. BART: a transcription factor prediction tool with query gene sets or epigenomic profiles. Wang Z; Civelek M; Miller CL; Sheffield NC; Guertin MJ; Zang C Bioinformatics; 2018 Aug; 34(16):2867-2869. PubMed ID: 29608647 [TBL] [Abstract][Full Text] [Related]
54. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Fejes AP; Robertson G; Bilenky M; Varhol R; Bainbridge M; Jones SJ Bioinformatics; 2008 Aug; 24(15):1729-30. PubMed ID: 18599518 [TBL] [Abstract][Full Text] [Related]
55. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding. Mahony S; Edwards MD; Mazzoni EO; Sherwood RI; Kakumanu A; Morrison CA; Wichterle H; Gifford DK PLoS Comput Biol; 2014 Mar; 10(3):e1003501. PubMed ID: 24675637 [TBL] [Abstract][Full Text] [Related]
56. Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data. Teng M; Irizarry RA Genome Res; 2017 Nov; 27(11):1930-1938. PubMed ID: 29025895 [TBL] [Abstract][Full Text] [Related]
57. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites. Eggeling R; Grosse I; Grau J Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026 [TBL] [Abstract][Full Text] [Related]
58. Discovery of protein-DNA interactions by penalized multivariate regression. Zamdborg L; Ma P Nucleic Acids Res; 2009 Sep; 37(16):5246-54. PubMed ID: 19578060 [TBL] [Abstract][Full Text] [Related]
59. High resolution discovery of chromatin interactions. Guo Y; Krismer K; Closser M; Wichterle H; Gifford DK Nucleic Acids Res; 2019 Apr; 47(6):e35. PubMed ID: 30953075 [TBL] [Abstract][Full Text] [Related]
60. R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression. Dawson JA; Ye S; Kendziorski C Bioinformatics; 2012 Jul; 28(14):1939-40. PubMed ID: 22595207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]