These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24115374)

  • 21. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isosorbide as a renewable platform chemical for versatile applications--quo vadis?
    Rose M; Palkovits R
    ChemSusChem; 2012 Jan; 5(1):167-76. PubMed ID: 22213713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts.
    Paganelli S; Massimi N; Di Michele A; Piccolo O; Rampazzo R; Facchin M; Beghetto V
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132541. PubMed ID: 38777012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols.
    Palkovits R; Tajvidi K; Ruppert AM; Procelewska J
    Chem Commun (Camb); 2011 Jan; 47(1):576-8. PubMed ID: 21103493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel.
    Kang J; Zhang S; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyoxomolybdate-stabilized Ru(0) nanoparticles deposited on mesoporous silica as catalysts for aromatic hydrogenation.
    Boujday S; Blanchard J; Villanneau R; Krafft JM; Geantet C; Louis C; Breysse M; Proust A
    Chemphyschem; 2007 Dec; 8(18):2636-42. PubMed ID: 18058778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent.
    Zhu Y; Kong ZN; Stubbs LP; Lin H; Shen S; Anslyn EV; Maguire JA
    ChemSusChem; 2010; 3(1):67-70. PubMed ID: 20024980
    [No Abstract]   [Full Text] [Related]  

  • 28. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose.
    Kobayashi H; Komanoya T; Hara K; Fukuoka A
    ChemSusChem; 2010 Apr; 3(4):440-3. PubMed ID: 20198680
    [No Abstract]   [Full Text] [Related]  

  • 29. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.
    Akbayrak S; Ozkar S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6302-10. PubMed ID: 23113804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone.
    Wei Z; Lou J; Su C; Guo D; Liu Y; Deng S
    ChemSusChem; 2017 Apr; 10(8):1720-1732. PubMed ID: 28328085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose Depolymerization over Heterogeneous Catalysts.
    Shrotri A; Kobayashi H; Fukuoka A
    Acc Chem Res; 2018 Mar; 51(3):761-768. PubMed ID: 29443505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts.
    Guo X; Guan J; Li B; Wang X; Mu X; Liu H
    Sci Rep; 2015 Nov; 5():16451. PubMed ID: 26578426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles.
    Lee YC; Dutta S; Wu KC
    ChemSusChem; 2014 Dec; 7(12):3241-6. PubMed ID: 25257168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose conversion to isosorbide in molten salt hydrate media.
    de Almeida RM; Li J; Nederlof C; O'Connor P; Makkee M; Moulijn JA
    ChemSusChem; 2010 Mar; 3(3):325-8. PubMed ID: 20186909
    [No Abstract]   [Full Text] [Related]  

  • 35. Efficient conversion of d-glucose into d-sorbitol over MCM-41 supported Ru catalyst prepared by a formaldehyde reduction process.
    Zhang J; Lin L; Zhang J; Shi J
    Carbohydr Res; 2011 Aug; 346(11):1327-32. PubMed ID: 21601181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System.
    Brandi F; Al-Naji M
    ChemSusChem; 2022 Mar; 15(5):e202102525. PubMed ID: 34931452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts.
    Artz J; Mallmann S; Palkovits R
    ChemSusChem; 2015 Feb; 8(4):672-9. PubMed ID: 25586312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports.
    Zhou L; Qi X; Jiang X; Zhou Y; Fu H; Chen H
    J Colloid Interface Sci; 2013 Feb; 392():201-205. PubMed ID: 23141762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-supported, selenium-modified ruthenium-molybdenum catalysts for oxygen reduction in acidic media.
    Guinel MJ; Bonakdarpour A; Wang B; Babu PK; Ernst F; Ramaswamy N; Mukerjee S; Wieckowski A
    ChemSusChem; 2009 Jul; 2(7):658-64. PubMed ID: 19554605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles.
    An D; Ye A; Deng W; Zhang Q; Wang Y
    Chemistry; 2012 Mar; 18(10):2938-47. PubMed ID: 22298297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.