These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 241156)
1. The differentiation of N-oxidation and N-dealkylation of N-ethyl-N-methylaniline by rabbit liver microsomes as distinct metabolic routes. Gorrod JW; Temple DJ; Beckett AH Xenobiotica; 1975 Aug; 5(8):465-74. PubMed ID: 241156 [TBL] [Abstract][Full Text] [Related]
2. The metabolism of N-ethyl-N-methylaniline by rabbit liver microsomes: the measurement of metabolites by gas-liquid chromatography. Gorrod JW; Temple DJ; Beckett AH Xenobiotica; 1975 Aug; 5(8):453-63. PubMed ID: 241155 [TBL] [Abstract][Full Text] [Related]
3. P-Chloro-N-methylaniline demethylation by rat kidney subcellular fractions. Navran SS; Louis-Ferdinand RT Res Commun Chem Pathol Pharmacol; 1975 Dec; 12(4):713-21. PubMed ID: 1215659 [TBL] [Abstract][Full Text] [Related]
4. Species and substrate differences of liver microsomal N-dealkylation and N-oxidation of tertiary amines and N-dealkylation of N-oxides. Bickel MH; Willi P; Gigon PL Xenobiotica; 1971; 1(4):533-4. PubMed ID: 4277658 [No Abstract] [Full Text] [Related]
5. NADH-synergism of NADPH-dependent o-dealkylation of type II compounds, p-anisidine and p-phenetidine, in rat liver microsomes. Kitada M; Kamataki T; Kitagawa H Arch Biochem Biophys; 1977 Jan; 178(1):151-7. PubMed ID: 13719 [No Abstract] [Full Text] [Related]
6. Enhancement of aniline hydroxylation in human liver microsomes. Kitada M; Hasunuma Y; Rikihisa T; Kanakubo Y Res Commun Chem Pathol Pharmacol; 1986 Jan; 51(1):101-16. PubMed ID: 3081974 [TBL] [Abstract][Full Text] [Related]
7. [Kinetic and spectral parameters of the amines oxidative N-dealkylation with participation of the liver microsomal cytochrome P-450. Amines oxidation with organic hydroperoxides]. Akhrem AA; Belbskií ; Metelitsa DI Biokhimiia; 1978 Feb; 43(2):216-20. PubMed ID: 647071 [TBL] [Abstract][Full Text] [Related]
8. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450. Correia MA; Mannering GJ Mol Pharmacol; 1973 Jul; 9(4):470-85. PubMed ID: 4146890 [No Abstract] [Full Text] [Related]
9. Effect of pregnancy or treatment with cetain steroids on N,N-dimethylaniline demethylation and N-oxidation by rabbit liver or lung microsomes. Devereux TR; Fouts JR Drug Metab Dispos; 1975; 3(4):254-8. PubMed ID: 240654 [TBL] [Abstract][Full Text] [Related]
10. The N- and alpha- C-oxidation of N,N-dialkylanilines by rabbit liver microsomes in vitro. Gorrod JW; Temple DJ; Beckett AH Xenobiotica; 1979 Jan; 9(1):17-25. PubMed ID: 760319 [TBL] [Abstract][Full Text] [Related]
11. Radical production in amine oxidation by liver microsomes. Stier A; Reitz I Xenobiotica; 1971; 1(4):499-500. PubMed ID: 4153032 [No Abstract] [Full Text] [Related]
12. Microsomal O-demethylation, N-demethylation and aromatic hydroxylation in the presence of bisulfite and dithiothreitol. Smith RV; Erhardt PW; Leslie SW Res Commun Chem Pathol Pharmacol; 1975 Sep; 12(1):181-4. PubMed ID: 1188185 [TBL] [Abstract][Full Text] [Related]
13. Hepatic microsomal N-hydroxylation of p-chloroaniline and p-chloro-N-methylaniline in red-winged blackbird compared with rat. Pan HP; Fouts JR; Devereux TR Xenobiotica; 1979 Jul; 9(7):441-6. PubMed ID: 40352 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Yun CH; Okerholm RA; Guengerich FP Drug Metab Dispos; 1993; 21(3):403-9. PubMed ID: 8100494 [TBL] [Abstract][Full Text] [Related]
15. Sex-dependent differences in drug metabolism in the rat. 3. Temporal changes in type I binding and NADPH-cytochrome, P-450 reductase during sexual maturation. Cohen GM; Mannering GJ Drug Metab Dispos; 1974; 2(3):285-92. PubMed ID: 4153061 [No Abstract] [Full Text] [Related]
16. Application of chemical cytochrome P-450 model systems to studies on drug metabolism. VI. N,N-coupling reaction of N-methylaniline catalyzed by polypeptide-bound porphyrinatoiron(III) and cytochrome P-450. Doi T; Mori T; Mashino T; Hirobe M Biochem Biophys Res Commun; 1993 Mar; 191(2):737-43. PubMed ID: 8461025 [TBL] [Abstract][Full Text] [Related]
17. [Kinetics of N-dealkylation of amines with participation of microsomal cytochrome P-450]. Akhrem AA; Bel'skiĭ SM; Metelitsa DI Biokhimiia; 1978 Jan; 43(1):23-7. PubMed ID: 23870 [TBL] [Abstract][Full Text] [Related]
18. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily. Nebbia C; Ceppa L; Dacasto M; Carletti M; Nachtmann C Drug Metab Dispos; 1999 Sep; 27(9):1039-44. PubMed ID: 10460804 [TBL] [Abstract][Full Text] [Related]
19. Formation and binding of carbanions by cytochrome P-450 of liver microsomes. Ullrich V; Schnabel KH Drug Metab Dispos; 1973; 1(1):176-83. PubMed ID: 4149380 [No Abstract] [Full Text] [Related]
20. Relationship between NADH and NADPH oxidation during drug metabolism. Sasame HA; Mitchell JR; Thorgeirsson S; Gillette JR Drug Metab Dispos; 1973; 1(1):150-5. PubMed ID: 4129866 [No Abstract] [Full Text] [Related] [Next] [New Search]