BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24115625)

  • 1. The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440.
    Casey WT; Nikodinovic-Runic J; Fonseca Garcia P; Guzik MW; McGrath JW; Quinn JP; Cagney G; Prieto MA; O'Connor KE
    Environ Microbiol Rep; 2013 Oct; 5(5):740-6. PubMed ID: 24115625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
    Escapa IF; del Cerro C; García JL; Prieto MA
    Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.
    Fonseca P; de la Peña F; Prieto MA
    Int J Biol Macromol; 2014 Nov; 71():14-20. PubMed ID: 24751507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440.
    Nikel PI; Chavarría M; Martínez-García E; Taylor AC; de Lorenzo V
    Microb Cell Fact; 2013 May; 12():50. PubMed ID: 23687963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of temperature-sensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA-3 affected in PHA accumulation.
    Goff M; Nikodinovic-Runic J; O'Connor KE
    FEMS Microbiol Lett; 2009 Mar; 292(2):297-305. PubMed ID: 19187205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth.
    Shi T; Ge Y; Zhao N; Hu X; Yuan Z
    Microbiol Res; 2015 Mar; 172():41-7. PubMed ID: 25541179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Raiger-Iustman LJ; Ruiz JA
    FEMS Microbiol Lett; 2008 Jul; 284(2):218-24. PubMed ID: 18498401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.
    Borrero-de Acuña JM; Bielecka A; Häussler S; Schobert M; Jahn M; Wittmann C; Jahn D; Poblete-Castro I
    Microb Cell Fact; 2014 Jun; 13():88. PubMed ID: 24948031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Integration and expression of polyphosphate kinase gene in Pseudomonas putida].
    Du HW; Wu J; Xiao L; Yang LY; Jiang LJ; Wang XL
    Huan Jing Ke Xue; 2009 Oct; 30(10):3011-5. PubMed ID: 19968123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida.
    Wang J; Ma W; Wang Y; Lin L; Wang T; Wang Y; Li Y; Wang X
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10523-10539. PubMed ID: 30338358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of polyphosphate kinase gene (ppk) increases bioinsecticide production by Bacillus thuringiensis.
    Doruk T; Avican U; Camci IY; Gedik ST
    Microbiol Res; 2013 May; 168(4):199-203. PubMed ID: 23369305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa.
    Hoffmann N; Rehm BH
    FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Changes in
    Dabrowska D; Mozejko-Ciesielska J; Pokój T; Ciesielski S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375721
    [No Abstract]   [Full Text] [Related]  

  • 18. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.
    Escapa IF; García JL; Bühler B; Blank LM; Prieto MA
    Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442.
    Liu W; Chen GQ
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1153-9. PubMed ID: 17668200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited.
    Liu S; Narancic T; Tham JL; O'Connor KE
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1863-1874. PubMed ID: 36763117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.