These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24115742)

  • 1. Intracellular microenvironment responsive polymers: a multiple-stage transport platform for high-performance gene delivery.
    Shi B; Zhang H; Dai S; Du X; Bi J; Qiao SZ
    Small; 2014 Mar; 10(5):871-7. PubMed ID: 24115742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosomal pH responsive polymers for efficient cancer targeted gene therapy.
    Shi B; Zhang H; Bi J; Dai S
    Colloids Surf B Biointerfaces; 2014 Jul; 119():55-65. PubMed ID: 24880229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular microenvironment-responsive label-free autofluorescent nanogels for traceable gene delivery.
    Shi B; Zhang H; Qiao SZ; Bi J; Dai S
    Adv Healthc Mater; 2014 Nov; 3(11):1839-48. PubMed ID: 24965262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection.
    Gu J; Wang X; Jiang X; Chen Y; Chen L; Fang X; Sha X
    Biomaterials; 2012 Jan; 33(2):644-58. PubMed ID: 22030282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics.
    Layek B; Singh J
    Biomacromolecules; 2013 Feb; 14(2):485-94. PubMed ID: 23301560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus.
    Yang Z; Li Y; Gao J; Cao Z; Jiang Q; Liu J
    Colloids Surf B Biointerfaces; 2017 May; 153():111-122. PubMed ID: 28236789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(imidazole/DMAEA)phosphazene/DNA self-assembled nanoparticles for gene delivery: synthesis and in vitro transfection.
    Yang Y; Xu Z; Jiang J; Gao Y; Gu W; Chen L; Tang X; Li Y
    J Control Release; 2008 May; 127(3):273-9. PubMed ID: 18346807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymers for nucleic acid transfer-an overview.
    Wagner E
    Adv Genet; 2014; 88():231-61. PubMed ID: 25409608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of multifold charge groups and imidazole-4-carboxaldehyde on physicochemical characteristics and transfection of cationic polyphosphazenes/DNA complexes.
    Yang Y; Zhang Z; Chen L; Li Y
    Int J Pharm; 2010 May; 390(2):191-7. PubMed ID: 20074628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction-degradable linear cationic polymers as gene carriers prepared by Cu(I)-catalyzed azide-alkyne cycloaddition.
    Wang Y; Zhang R; Xu N; Du FS; Wang YL; Tan YX; Ji SP; Liang DH; Li ZC
    Biomacromolecules; 2011 Jan; 12(1):66-74. PubMed ID: 21126012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoplasmic reticulum localization of poly(ω-aminohexyl methacrylamide)s conjugated with (L-)-arginines in plasmid DNA delivery.
    Li H; Luo T; Sheng R; Sun J; Wang Z; Cao A
    Biomaterials; 2013 Oct; 34(32):7923-38. PubMed ID: 23880337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection.
    Kim TI; Baek JU; Yoon JK; Choi JS; Kim K; Park JS
    Bioconjug Chem; 2007; 18(2):309-17. PubMed ID: 17315976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell penetrating peptide conjugated polymeric micelles as a high performance versatile nonviral gene carrier.
    Layek B; Singh J
    Biomacromolecules; 2013 Nov; 14(11):4071-81. PubMed ID: 24083483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems.
    Ahmed M; Narain R
    Biomaterials; 2011 Aug; 32(22):5279-90. PubMed ID: 21529936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary complexes comprising polyphosphoramidate gene carriers with different types of charge groups improve transfection efficiency.
    Zhang PC; Wang J; Leong KW; Mao HQ
    Biomacromolecules; 2005; 6(1):54-60. PubMed ID: 15638504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity examination of poly(glycoamidoguanidine)s: glycopolycations containing guanidine units for nucleic acid delivery.
    Taori VP; Lu H; Reineke TM
    Biomacromolecules; 2011 Jun; 12(6):2055-63. PubMed ID: 21506608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer.
    Lee MK; Chun SK; Choi WJ; Kim JK; Choi SH; Kim A; Oungbho K; Park JS; Ahn WS; Kim CK
    Biomaterials; 2005 May; 26(14):2147-56. PubMed ID: 15576190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and preliminary cellular evaluation of phosphonium chitosan derivatives as novel non-viral vector.
    Qian C; Xu X; Shen Y; Li Y; Guo S
    Carbohydr Polym; 2013 Sep; 97(2):676-83. PubMed ID: 23911500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess polycation mediates efficient chitosan-based gene transfer by promoting lysosomal release of the polyplexes.
    Thibault M; Astolfi M; Tran-Khanh N; Lavertu M; Darras V; Merzouki A; Buschmann MD
    Biomaterials; 2011 Jul; 32(20):4639-46. PubMed ID: 21450340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.