BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24116139)

  • 1. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.
    Jacewicz A; Trzemecka A; Guja KE; Plochocka D; Yakubovskaya E; Bebenek A; Garcia-Diaz M
    PLoS One; 2013; 8(10):e76700. PubMed ID: 24116139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity.
    Zhong X; Pedersen LC; Kunkel TA
    Nucleic Acids Res; 2008 Jul; 36(12):3892-904. PubMed ID: 18503083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site.
    Yang G; Wang J; Konigsberg W
    Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of mismatch formation opposite lesions by the replicative DNA polymerase from bacteriophage RB69.
    Hogg M; Rudnicki J; Midkiff J; Reha-Krantz L; DoubliƩ S; Wallace SS
    Biochemistry; 2010 Mar; 49(11):2317-25. PubMed ID: 20166748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein determinants of RNA binding by DNA polymerase of the T4-related bacteriophage RB69.
    Petrov VM; Ng SS; Karam JD
    J Biol Chem; 2002 Sep; 277(36):33041-8. PubMed ID: 12087102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of selected RB69 DNA polymerase mutants can be restored by manganese ions: the existence of alternative metal ion ligands used during the polymerization cycle.
    Zakharova E; Wang J; Konigsberg W
    Biochemistry; 2004 Jun; 43(21):6587-95. PubMed ID: 15157091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration in the cavity size adjacent to the active site of RB69 DNA polymerase changes its conformational dynamics.
    Xia S; Wood M; Bradley MJ; De La Cruz EM; Konigsberg WH
    Nucleic Acids Res; 2013 Oct; 41(19):9077-89. PubMed ID: 23921641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of a mutator activity by a nearby fidelity-neutral substitution in the RB69 DNA polymerase binding pocket.
    Trzemecka A; Jacewicz A; Carver GT; Drake JW; Bebenek A
    J Mol Biol; 2010 Dec; 404(5):778-93. PubMed ID: 20950625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex.
    Wang M; Lee HR; Konigsberg W
    Biochemistry; 2009 Mar; 48(10):2075-86. PubMed ID: 19228037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The L561A substitution in the nascent base-pair binding pocket of RB69 DNA polymerase reduces base discrimination.
    Zhang H; Rhee C; Bebenek A; Drake JW; Wang J; Konigsberg W
    Biochemistry; 2006 Feb; 45(7):2211-20. PubMed ID: 16475809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation.
    Yang G; Lin T; Karam J; Konigsberg WH
    Biochemistry; 1999 Jun; 38(25):8094-101. PubMed ID: 10387055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in mutation rates caused by RB69pol fidelity mutants can be rationalized on the basis of their kinetic behavior and crystal structures.
    Xia S; Wang M; Lee HR; Sinha A; Blaha G; Christian T; Wang J; Konigsberg W
    J Mol Biol; 2011 Mar; 406(4):558-70. PubMed ID: 21216248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a fluorescent cytosine analogue tC(o) to probe the effect of the Y567 to Ala substitution on the preinsertion steps of dNMP incorporation by RB69 DNA polymerase.
    Xia S; Beckman J; Wang J; Konigsberg WH
    Biochemistry; 2012 Jun; 51(22):4609-17. PubMed ID: 22616982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Aug; 41(32):10256-61. PubMed ID: 12162740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RB69 DNA polymerase structure, kinetics, and fidelity.
    Xia S; Konigsberg WH
    Biochemistry; 2014 May; 53(17):2752-67. PubMed ID: 24720884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of Tyr391 and Tyr619 in RB69 DNA polymerase replication fidelity.
    Jacewicz A; Makiela K; Kierzek A; Drake JW; Bebenek A
    J Mol Biol; 2007 Apr; 368(1):18-29. PubMed ID: 17321543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7.
    Singh MK; Manoj N
    Proteins; 2017 Apr; 85(4):694-708. PubMed ID: 28097692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA.
    Xia S; Christian TD; Wang J; Konigsberg WH
    Biochemistry; 2012 May; 51(21):4343-53. PubMed ID: 22571765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pre-NH(2)-terminal domain of the herpes simplex virus 1 DNA polymerase catalytic subunit is required for efficient viral replication.
    Terrell SL; Coen DM
    J Virol; 2012 Oct; 86(20):11057-65. PubMed ID: 22875965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.