These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24116221)

  • 1. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.
    Crewe C; Kinter M; Szweda LI
    PLoS One; 2013; 8(10):e77280. PubMed ID: 24116221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice.
    Schafer C; Young ZT; Makarewich CA; Elnwasany A; Kinter C; Kinter M; Szweda LI
    J Biol Chem; 2018 May; 293(18):6915-6924. PubMed ID: 29540486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing cardiac glycolysis causes an increase in PDK4 content in response to short-term high-fat diet.
    Newhardt MF; Batushansky A; Matsuzaki S; Young ZT; West M; Chin NC; Szweda LI; Kinter M; Humphries KM
    J Biol Chem; 2019 Nov; 294(45):16831-16845. PubMed ID: 31562244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms underlying the long-term impact of dietary fat to increase cardiac pyruvate dehydrogenase kinase: regulation by insulin, cyclic AMP and pyruvate.
    Sugden MC; Orfali KA; Fryer LG; Holness MJ; Priestman DA
    J Mol Cell Cardiol; 1997 Jul; 29(7):1867-75. PubMed ID: 9236140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long-term regulation of skeletal muscle pyruvate dehydrogenase kinase by dietary lipid is dependent on fatty acid composition.
    Fryer LG; Orfali KA; Holness MJ; Saggerson ED; Sugden MC
    Eur J Biochem; 1995 May; 229(3):741-8. PubMed ID: 7758471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of hepatic pyruvate dehydrogenase kinase by insulin and dietary manipulation in vivo. Studies with the euglycaemic-hyperinsulinaemic clamp.
    Sugden MC; Fryer LG; Holness MJ
    Biochim Biophys Acta; 1996 Jun; 1316(2):114-20. PubMed ID: 8672548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice.
    Wu CY; Tso SC; Chuang JL; Gui WJ; Lou M; Sharma G; Khemtong C; Qi X; Wynn RM; Chuang DT
    Mol Metab; 2018 Jun; 12():12-24. PubMed ID: 29656110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate dehydrogenase kinase-4 deficiency lowers blood glucose and improves glucose tolerance in diet-induced obese mice.
    Jeoung NH; Harris RA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E46-54. PubMed ID: 18430968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Your mitochondria are what you eat: a high-fat or a high-sucrose diet eliminates metabolic flexibility in isolated mitochondria from rat skeletal muscle.
    Jørgensen W; Rud KA; Mortensen OH; Frandsen L; Grunnet N; Quistorff B
    Physiol Rep; 2017 Mar; 5(6):. PubMed ID: 28330953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding.
    Wright JJ; Kim J; Buchanan J; Boudina S; Sena S; Bakirtzi K; Ilkun O; Theobald HA; Cooksey RC; Kandror KV; Abel ED
    Cardiovasc Res; 2009 May; 82(2):351-60. PubMed ID: 19147655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.
    Prasad V; Lorenz JN; Miller ML; Vairamani K; Nieman ML; Wang Y; Shull GE
    J Mol Cell Cardiol; 2013 Dec; 65():33-42. PubMed ID: 24080184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype.
    Min BK; Park S; Kang HJ; Kim DW; Ham HJ; Ha CM; Choi BJ; Lee JY; Oh CJ; Yoo EK; Kim HE; Kim BG; Jeon JH; Hyeon DY; Hwang D; Kim YH; Lee CH; Lee T; Kim JW; Choi YK; Park KG; Chawla A; Lee J; Harris RA; Lee IK
    Front Immunol; 2019; 10():944. PubMed ID: 31134063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity.
    Yan J; Young ME; Cui L; Lopaschuk GD; Liao R; Tian R
    Circulation; 2009 Jun; 119(21):2818-28. PubMed ID: 19451348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity.
    Wu CY; Satapati S; Gui W; Wynn RM; Sharma G; Lou M; Qi X; Burgess SC; Malloy C; Khemtong C; Sherry AD; Chuang DT; Merritt ME
    J Biol Chem; 2018 Jun; 293(25):9604-9613. PubMed ID: 29739849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of diet composition on weight gain and pyruvate dehydrogenase activity in heart muscle in the gold thioglucose obese mouse.
    Steinbeck K; Caterson ID; Astbury L; Turtle JR
    Int J Obes; 1987; 11(5):507-18. PubMed ID: 3123409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding.
    Holness MJ; Kraus A; Harris RA; Sugden MC
    Diabetes; 2000 May; 49(5):775-81. PubMed ID: 10905486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart.
    Emelyanova L; Boukatina A; Myers C; Oyarzo J; Lustgarten J; Shi Y; Jahangir A
    PLoS One; 2019; 14(7):e0217045. PubMed ID: 31265457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects.
    Turdi S; Ge W; Hu N; Bradley KM; Wang X; Ren J
    J Mol Cell Cardiol; 2013 Feb; 55():117-29. PubMed ID: 23266593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated n-3 fatty acids in a high-fat diet attenuate the increase in PDH kinase activity but not PDH activity in human skeletal muscle.
    Turvey EA; Heigenhauser GJ; Parolin M; Peters SJ
    J Appl Physiol (1985); 2005 Jan; 98(1):350-5. PubMed ID: 15591305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.