These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 24116221)
41. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Park SY; Kim HJ; Wang S; Higashimori T; Dong J; Kim YJ; Cline G; Li H; Prentki M; Shulman GI; Mitchell GA; Kim JK Am J Physiol Endocrinol Metab; 2005 Jul; 289(1):E30-9. PubMed ID: 15701680 [TBL] [Abstract][Full Text] [Related]
42. Rare ginsenosides ameliorate lipid overload-induced myocardial insulin resistance via modulating metabolic flexibility. Peng S; Wang Y; Zhou Y; Ma T; Wang Y; Li J; Huang F; Kou J; Qi L; Liu B; Liu K Phytomedicine; 2019 May; 58():152745. PubMed ID: 31005715 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of the role of peroxisome-proliferator-activated receptor alpha in the regulation of cardiac pyruvate dehydrogenase kinase 4 protein expression in response to starvation, high-fat feeding and hyperthyroidism. Holness MJ; Smith ND; Bulmer K; Hopkins T; Gibbons GF; Sugden MC Biochem J; 2002 Jun; 364(Pt 3):687-94. PubMed ID: 12049632 [TBL] [Abstract][Full Text] [Related]
44. Shift in metabolic fuel in acylation-stimulating protein-deficient mice following a high-fat diet. Roy C; Paglialunga S; Fisette A; Schrauwen P; Moonen-Kornips E; St-Onge J; Hesselink MK; Richard D; Joanisse DR; Cianflone K Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E1051-9. PubMed ID: 18398012 [TBL] [Abstract][Full Text] [Related]
45. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Jeoung NH; Wu P; Joshi MA; Jaskiewicz J; Bock CB; Depaoli-Roach AA; Harris RA Biochem J; 2006 Aug; 397(3):417-25. PubMed ID: 16606348 [TBL] [Abstract][Full Text] [Related]
46. Palmitoylethanolamide counteracts hepatic metabolic inflexibility modulating mitochondrial function and efficiency in diet-induced obese mice. Annunziata C; Lama A; Pirozzi C; Cavaliere G; Trinchese G; Di Guida F; Nitrato Izzo A; Cimmino F; Paciello O; De Biase D; Murru E; Banni S; Calignano A; Mollica MP; Mattace Raso G; Meli R FASEB J; 2020 Jan; 34(1):350-364. PubMed ID: 31914699 [TBL] [Abstract][Full Text] [Related]
47. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Altamimi TR; Gao S; Karwi QG; Fukushima A; Rawat S; Wagg CS; Zhang L; Lopaschuk GD Metabolism; 2019 Sep; 98():37-48. PubMed ID: 31202835 [TBL] [Abstract][Full Text] [Related]
48. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Mori J; Alrob OA; Wagg CS; Harris RA; Lopaschuk GD; Oudit GY Am J Physiol Heart Circ Physiol; 2013 Apr; 304(8):H1103-13. PubMed ID: 23396452 [TBL] [Abstract][Full Text] [Related]
49. Induction of PDK4 in the heart muscle of JVS mice, an animal model of systemic carnitine deficiency, does not appear to reduce glucose utilization by the heart. Ushikai M; Horiuchi M; Kobayashi K; Matuda S; Inui A; Takeuchi T; Saheki T Mol Genet Metab; 2011 Mar; 102(3):349-55. PubMed ID: 21190881 [TBL] [Abstract][Full Text] [Related]
50. Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Wilson CR; Tran MK; Salazar KL; Young ME; Taegtmeyer H Biochem J; 2007 Sep; 406(3):457-67. PubMed ID: 17550347 [TBL] [Abstract][Full Text] [Related]
51. Intracerebroventricular leptin administration differentially alters cardiac energy metabolism in mice fed a low-fat and high-fat diet. Keung W; Cadete VJ; Palaniyappan A; Jablonski A; Fischer M; Lopaschuk GD J Cardiovasc Pharmacol; 2011 Jan; 57(1):103-13. PubMed ID: 20980918 [TBL] [Abstract][Full Text] [Related]
52. Pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) deficiency attenuates the long-term negative effects of a high-saturated fat diet. Hwang B; Jeoung NH; Harris RA Biochem J; 2009 Sep; 423(2):243-52. PubMed ID: 19627255 [TBL] [Abstract][Full Text] [Related]
53. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. Vadvalkar SS; Matsuzaki S; Eyster CA; Giorgione JR; Bockus LB; Kinter CS; Kinter M; Humphries KM J Biol Chem; 2017 Mar; 292(11):4423-4433. PubMed ID: 28154187 [TBL] [Abstract][Full Text] [Related]
54. Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms. Frier BC; Jacobs RL; Wright DC Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R212-21. PubMed ID: 21084676 [TBL] [Abstract][Full Text] [Related]
55. Defining the contribution of skeletal muscle pyruvate dehydrogenase α1 to exercise performance and insulin action. Svensson K; Dent JR; Tahvilian S; Martins VF; Sathe A; Ochala J; Patel MS; Schenk S Am J Physiol Endocrinol Metab; 2018 Nov; 315(5):E1034-E1045. PubMed ID: 30153068 [TBL] [Abstract][Full Text] [Related]
56. Effects of high fat and high carbohydrate diets on liver pyruvate dehydrogenase and its activation by a chemical mediator released from insulin-treated liver particulate fraction: effect of neuraminidase treatment on the chemical mediator activity. Begum N; Tepperman HM; Tepperman J Endocrinology; 1983 Jan; 112(1):50-9. PubMed ID: 6336615 [TBL] [Abstract][Full Text] [Related]
58. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Khairallah M; Labarthe F; Bouchard B; Danialou G; Petrof BJ; Des Rosiers C Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1461-70. PubMed ID: 14670819 [TBL] [Abstract][Full Text] [Related]