BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24116421)

  • 1. Effect of metabolic presbyacusis on cochlear responses: a simulation approach using a physiologically-based model.
    Saremi A; Stenfelt S
    J Acoust Soc Am; 2013 Oct; 134(4):2833-51. PubMed ID: 24116421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis.
    Park SN; Back SA; Choung YH; Kim HL; Akil O; Lustig LR; Park KH; Yeo SW
    Neurosci Res; 2011 Nov; 71(3):303-10. PubMed ID: 21840348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular correlates of progressive hearing loss in 129S6/SvEv mice.
    Ohlemiller KK; Gagnon PM
    J Comp Neurol; 2004 Feb; 469(3):377-90. PubMed ID: 14730589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss.
    Felder E; Schrott-Fischer A
    Hear Res; 1995 Nov; 91(1-2):19-32. PubMed ID: 8647720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss.
    Yang H; Xiong H; Huang Q; Pang J; Zheng X; Chen L; Yu R; Zheng Y
    Neurosci Lett; 2013 Oct; 555():97-101. PubMed ID: 24055606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy.
    Heeringa AN; Köppl C
    Hear Res; 2019 May; 376():111-124. PubMed ID: 30862414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss.
    Xiong H; Dai M; Ou Y; Pang J; Yang H; Huang Q; Chen S; Zhang Z; Xu Y; Cai Y; Liang M; Zhang X; Lai L; Zheng Y
    Exp Gerontol; 2014 Mar; 51():8-14. PubMed ID: 24365660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galectine-1 expression in cochleae of C57BL/6 mice during aging.
    Bartolomé MV; López LM; Gil-Loyzaga P
    Neuroreport; 2001 Oct; 12(14):3107-10. PubMed ID: 11568646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards understanding the specifics of cochlear hearing loss: a modelling approach.
    Stenfelt S
    Int J Audiol; 2008 Nov; 47 Suppl 2():S10-5. PubMed ID: 19012107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Implication of mitochondrial apoptosis in neural degeneration of cochlea in a murine model for presbycusis].
    Riva C; Longuet M; Lucciano M; Magnan J; Lavieille JP
    Rev Laryngol Otol Rhinol (Bord); 2005; 126(2):67-74. PubMed ID: 16180344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic reduction of endocochlear potential reduces auditory nerve activity: further confirmation of an animal model of metabolic presbyacusis.
    Lang H; Jyothi V; Smythe NM; Dubno JR; Schulte BA; Schmiedt RA
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):419-34. PubMed ID: 20372958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Expression of Bcl-2 in the Cochlea and Auditory Cortex of a Mouse Model of Age-Related Hearing Loss.
    Huang Q; Xiong H; Yang H; Ou Y; Zhang Z; Chen S; Ye Y; Zheng Y
    Audiol Neurootol; 2016; 21(5):326-332. PubMed ID: 27925611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea.
    Riva C; Donadieu E; Magnan J; Lavieille JP
    Exp Gerontol; 2007 Apr; 42(4):327-36. PubMed ID: 17141999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular correlates of age-related endocochlear potential reduction in a mouse model.
    Ohlemiller KK; Lett JM; Gagnon PM
    Hear Res; 2006 Oct; 220(1-2):10-26. PubMed ID: 16901664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different models of the active cochlea, and how to implement them in the state-space formalism.
    Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D
    J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear.
    Wu PZ; Liberman LD; Bennett K; de Gruttola V; O'Malley JT; Liberman MC
    Neuroscience; 2019 May; 407():8-20. PubMed ID: 30099118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea.
    Menardo J; Tang Y; Ladrech S; Lenoir M; Casas F; Michel C; Bourien J; Ruel J; Rebillard G; Maurice T; Puel JL; Wang J
    Antioxid Redox Signal; 2012 Feb; 16(3):263-74. PubMed ID: 21923553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in cochlear physiology after Békésy.
    Guinan JJ; Salt A; Cheatham MA
    Hear Res; 2012 Nov; 293(1-2):12-20. PubMed ID: 22633944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.