These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24116431)

  • 1. Acoustic interaction between the right and left piriform fossae in generating spectral dips.
    Takemoto H; Adachi S; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2013 Oct; 134(4):2955-64. PubMed ID: 24116431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.
    Delvaux B; Howard D
    PLoS One; 2014; 9(7):e102680. PubMed ID: 25048199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.
    Vampola T; Horáček J; Laukkanen AM; Švec JG
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):14-23. PubMed ID: 23517635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models.
    Zhang Z; Kreiman J; Gerratt BR; Garellek M
    J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologic and acoustic patterns of essential vocal tremor.
    Lester RA; Barkmeier-Kraemer J; Story BH
    J Voice; 2013 Jul; 27(4):422-32. PubMed ID: 23490130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dynamic Effect of the Valleculae on Singing Voice - An Exploratory Study Using 3D Printed Vocal Tracts.
    Feng M; Howard DM
    J Voice; 2023 Mar; 37(2):178-186. PubMed ID: 33397591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.
    Arnela M; Guasch O; Alías F
    J Acoust Soc Am; 2013 Oct; 134(4):2946-54. PubMed ID: 24116430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic characteristics of the piriform fossa in models and humans.
    Dang J; Honda K
    J Acoust Soc Am; 1997 Jan; 101(1):456-65. PubMed ID: 9000736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deviant vocal fold vibration as observed during videokymography: the effect on voice quality.
    Verdonck-de Leeuw IM; Festen JM; Mahieu HF
    J Voice; 2001 Sep; 15(3):313-22. PubMed ID: 11575628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fundamental frequency at voice onset on vocal attack time.
    Watson BC; Baken RJ; Roark RM; Reid S; Ribeiro M; Tsai W
    J Voice; 2013 May; 27(3):273-7. PubMed ID: 23490128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of voice using simultaneous high-speed imaging and acoustic recordings.
    Yan Y; Damrose E; Bless D
    J Voice; 2007 Sep; 21(5):604-16. PubMed ID: 16968665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualisation of hypopharyngeal cavities and vocal-tract acoustic modelling.
    Honda K; Kitamura T; Takemoto H; Adachi S; Mokhtari P; Takano S; Nota Y; Hirata H; Fujimoto I; Shimada Y; Masaki S; Fujita S; Dang J
    Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):443-53. PubMed ID: 20635261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of male singers laryngeal vertical displacement during the first passaggio and its implications on the vocal folds vibratory pattern.
    Andrade PA
    J Voice; 2012 Sep; 26(5):665.e19-24. PubMed ID: 22578439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR; Pickering J; Stemple J; Donohue KD
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.