These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 24116553)
1. Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. II. The generalized Laplace, Gibbs-Kelvin, and Young equations and application to nucleation. Noppel M; Vehkamäki H; Winkler PM; Kulmala M; Wagner PE J Chem Phys; 2013 Oct; 139(13):134108. PubMed ID: 24116553 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. I. Formulation of general equations: electrical surface and line excess quantities. Noppel M; Vehkamäki H; Winkler PM; Kulmala M; Wagner PE J Chem Phys; 2013 Oct; 139(13):134107. PubMed ID: 24116552 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium of multi-phase systems in gravitational fields. Voitcu O; Elliott JA J Phys Chem B; 2008 Sep; 112(38):11981-9. PubMed ID: 18729502 [TBL] [Abstract][Full Text] [Related]
4. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. Kaptay G J Nanosci Nanotechnol; 2012 Mar; 12(3):2625-33. PubMed ID: 22755100 [TBL] [Abstract][Full Text] [Related]
5. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
6. Temperature of critical clusters in nucleation theory: generalized Gibbs' approach. Schmelzer JW; Boltachev GSh; Abyzov AS J Chem Phys; 2013 Jul; 139(3):034702. PubMed ID: 23883047 [TBL] [Abstract][Full Text] [Related]
7. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Kaptay G Adv Colloid Interface Sci; 2018 Jun; 256():163-192. PubMed ID: 29705027 [TBL] [Abstract][Full Text] [Related]
8. A partial equilibrium theory for liquids bonded to immobile solids. Searcy AW; Beruto DT; Barberis F J Chem Phys; 2009 May; 130(18):184713. PubMed ID: 19449949 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of heterogeneous crystal nucleation in contact and immersion modes. Djikaev YS; Ruckenstein E J Phys Chem A; 2008 Nov; 112(46):11677-87. PubMed ID: 18925734 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous critical nucleation on a completely wettable substrate. Iwamatsu M J Chem Phys; 2011 Jun; 134(23):234709. PubMed ID: 21702578 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of droplet formation around a soluble condensation nucleus in the atmosphere of a solvent vapor. Shchekin AK; Shabaev IV; Rusanov AI J Chem Phys; 2008 Dec; 129(21):214111. PubMed ID: 19063548 [TBL] [Abstract][Full Text] [Related]
12. Multicomponent nucleation: thermodynamically consistent description of the nucleation work. Kashchiev D J Chem Phys; 2004 Feb; 120(8):3749-58. PubMed ID: 15268538 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamically consistent incorporation of the Schneider rate equations into two-phase models. Hütter M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011209. PubMed ID: 11461242 [TBL] [Abstract][Full Text] [Related]
14. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
15. Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies. Olives J J Phys Condens Matter; 2010 Mar; 22(8):085005. PubMed ID: 21389407 [TBL] [Abstract][Full Text] [Related]
16. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
17. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters. Hrubý J; Labetski DG; van Dongen ME J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384 [TBL] [Abstract][Full Text] [Related]
18. Generalization of Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces. Svintradze DV Biophys J; 2023 Mar; 122(5):892-904. PubMed ID: 36703559 [TBL] [Abstract][Full Text] [Related]
19. Shape-anisotropic particles at curved fluid interfaces and role of Laplace pressure: a computational study. Cheng TL; Wang YU J Colloid Interface Sci; 2013 Jul; 402():267-78. PubMed ID: 23628204 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids. Alekseechkin NV J Phys Chem B; 2012 Aug; 116(31):9445-59. PubMed ID: 22804478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]