These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24116554)

  • 1. A unifying mode-coupling theory for transport properties of electrolyte solutions. I. General scheme and limiting laws.
    Contreras Aburto C; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134109. PubMed ID: 24116554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.
    Aburto CC; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity of electrolyte solutions: a mode-coupling theory.
    Contreras-Aburto C; Nägele G
    J Phys Condens Matter; 2012 Nov; 24(46):464108. PubMed ID: 23113963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.
    Roy S; Yashonath S; Bagchi B
    J Chem Phys; 2015 Mar; 142(12):124502. PubMed ID: 25833591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport coefficients of aqueous dodecyltrimethylammonium bromide solutions: comparison between experiments, analytical calculations and numerical simulations.
    Jardat M; Durand-Vidal S; Da Mota N; Turq P
    J Chem Phys; 2004 Apr; 120(13):6268-73. PubMed ID: 15267514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic relaxation and hydrodynamic interactions for self-diffusion of ions in electrolyte solutions.
    Dufrêche JF; Jardat M; Turq P; Bagchi B
    J Phys Chem B; 2008 Aug; 112(33):10264-71. PubMed ID: 18605686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductivity and electrophoretic mobility of dilute ionic solutions.
    Allison S; Wu H; Twahir U; Pei H
    J Colloid Interface Sci; 2010 Dec; 352(1):1-10. PubMed ID: 20810126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-monotonic size dependence of diffusion and levitation effect: a mode-coupling theory analysis.
    Nandi MK; Banerjee A; Bhattacharyya SM
    J Chem Phys; 2013 Mar; 138(12):124505. PubMed ID: 23556734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical theories of transport in concentrated electrolyte solutions from the MSA.
    Dufrêche JF; Bernard O; Durand-Vidal S; Turq P
    J Phys Chem B; 2005 May; 109(20):9873-84. PubMed ID: 16852194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of suspensions of hydrodynamically structured particles: analytic theory and applications to experiments.
    Riest J; Eckert T; Richtering W; Nägele G
    Soft Matter; 2015 Apr; 11(14):2821-43. PubMed ID: 25707362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanism of equivalent conductivity minimum of electrolyte solution.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2011 Oct; 135(16):164511. PubMed ID: 22047256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydrodynamic interaction on the equivalent conductivity minimum of electrolyte solutions in solvents of low dielectric constant.
    Yamaguchi T; Shimoda Y; Koda S
    J Chem Phys; 2013 Jan; 138(2):024503. PubMed ID: 23320700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterion condensation in short cationic peptides: limiting mobilities beyond the Onsager-Fuoss theory.
    Wernersson E; Heyda J; Kubíčková A; Křížek T; Coufal P; Jungwirth P
    Electrophoresis; 2012 Mar; 33(6):981-9. PubMed ID: 22528417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2009 Mar; 130(9):094506. PubMed ID: 19275408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. III. Tetraalkylammonium bromides.
    Hoshina TA; Tanaka K; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2005 Mar; 122(10):104512. PubMed ID: 15836337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoresis of diffuse soft particles.
    Duval JF; Ohshima H
    Langmuir; 2006 Apr; 22(8):3533-46. PubMed ID: 16584225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres.
    Banchio AJ; Nägele G
    J Chem Phys; 2008 Mar; 128(10):104903. PubMed ID: 18345924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-diffusion and activity coefficients of ions in charged disordered media.
    Jardat M; Hribar-Lee B; Dahirel V; Vlachy V
    J Chem Phys; 2012 Sep; 137(11):114507. PubMed ID: 22998271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.