These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24116555)

  • 21. Effect of solvent permittivity on the thermodynamic behavior of HCl solutions: analysis using the smaller-ion shell model of strong electrolytes.
    Fraenkel D
    J Phys Chem B; 2011 Dec; 115(49):14634-47. PubMed ID: 22014208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlated electrolyte solutions and ion-induced attractions between nanoparticles.
    Zwanikken JW; de la Cruz MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):050401. PubMed ID: 21230424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: finite ion size and effective ion permittivity effects.
    López-García JJ; Horno J; Grosse C
    J Colloid Interface Sci; 2012 Aug; 380(1):213-21. PubMed ID: 22683215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of hydrodynamic interaction on the equivalent conductivity minimum of electrolyte solutions in solvents of low dielectric constant.
    Yamaguchi T; Shimoda Y; Koda S
    J Chem Phys; 2013 Jan; 138(2):024503. PubMed ID: 23320700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution.
    Boström M; Tavares FW; Ninham BW; Prausnitz JM
    J Phys Chem B; 2006 Dec; 110(48):24757-60. PubMed ID: 17134240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of excess Gibbs energy of electrolyte solutions: a new model for aqueous solutions.
    Dougherty RC; Howard LN
    Biophys Chem; 2003 Sep; 105(2-3):269-78. PubMed ID: 14499899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions.
    Medina S; Zhou J; Wang ZG; Schmid F
    J Chem Phys; 2015 Jan; 142(2):024103. PubMed ID: 25591334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature effects on electrophoresis.
    Rogacs A; Santiago JG
    Anal Chem; 2013 May; 85(10):5103-13. PubMed ID: 23627294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions.
    Hu YF; Zhang XM; Li JG; Liang QQ
    J Phys Chem B; 2008 Dec; 112(48):15376-81. PubMed ID: 18989914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels.
    Zheng Z; Hansford DJ; Conlisk AT
    Electrophoresis; 2003 Sep; 24(17):3006-17. PubMed ID: 12973804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical study supplemented with simplified model on electrophoresis of a hydrophobic colloid incorporating finite ion size effects and ion-solvent interactions.
    Bhaskar B; Bhattacharyya S
    Electrophoresis; 2023 Feb; 44(3-4):403-416. PubMed ID: 36377510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified Henry function for the electrophoretic mobility of a charged spherical colloidal particle covered with an ion-penetrable uncharged polymer layer.
    Ohshima H
    J Colloid Interface Sci; 2002 Aug; 252(1):119-25. PubMed ID: 16290770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophoretic mobility of colloidal gold particles in electrolyte solutions.
    Agnihotri SM; Ohshima H; Terada H; Tomoda K; Makino K
    Langmuir; 2009 Apr; 25(8):4804-7. PubMed ID: 19366230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport coefficients of aqueous dodecyltrimethylammonium bromide solutions: comparison between experiments, analytical calculations and numerical simulations.
    Jardat M; Durand-Vidal S; Da Mota N; Turq P
    J Chem Phys; 2004 Apr; 120(13):6268-73. PubMed ID: 15267514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primitive models of ions in solution from molecular descriptions: a perturbation approach.
    Molina JJ; Dufrêche JF; Salanne M; Bernard O; Turq P
    J Chem Phys; 2011 Dec; 135(23):234509. PubMed ID: 22191888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion pairing in aqueous electrolyte solutions with biologically relevant anions.
    Ganguly P; Schravendijk P; Hess B; van der Vegt NF
    J Phys Chem B; 2011 Apr; 115(13):3734-9. PubMed ID: 21410261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Models of electrolyte solutions from molecular descriptions: the example of NaCl solutions.
    Molina JJ; Dufrêche JF; Salanne M; Bernard O; Jardat M; Turq P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065103. PubMed ID: 20365215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the dielectrophoretic force in mixed electrical double layers.
    López-García JJ; Horno J; Grosse C
    J Colloid Interface Sci; 2013 Sep; 405():336-43. PubMed ID: 23786835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.