These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24116635)

  • 1. On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness.
    Long Y; Palmer JC; Coasne B; Śliwinska-Bartkowiak M; Jackson G; Müller EA; Gubbins KE
    J Chem Phys; 2013 Oct; 139(14):144701. PubMed ID: 24116635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure enhancement in carbon nanopores: a major confinement effect.
    Long Y; Palmer JC; Coasne B; Śliwinska-Bartkowiak M; Gubbins KE
    Phys Chem Chem Phys; 2011 Oct; 13(38):17163-70. PubMed ID: 21879057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation forces between molecularly rough surfaces.
    Yang K; Lin Y; Lu X; Neimark AV
    J Colloid Interface Sci; 2011 Oct; 362(2):382-8. PubMed ID: 21774945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local chemical potential and pressure tensor in inhomogeneous nanoconfined fluids.
    Eslami H; Mehdipour N
    J Chem Phys; 2012 Oct; 137(14):144702. PubMed ID: 23061856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of freezing of simple fluids confined within carbon nanotubes.
    Hung FR; Coasne B; Santiso EE; Gubbins KE; Siperstein FR; Sliwinska-Bartkowiak M
    J Chem Phys; 2005 Apr; 122(14):144706. PubMed ID: 15847552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2006 Feb; 124(6):64712. PubMed ID: 16483234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study.
    Wongkoblap A; Do DD
    J Colloid Interface Sci; 2006 May; 297(1):1-9. PubMed ID: 16297400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Nitric Oxide Dimer Reaction in Carbon Nanopores.
    Srivastava D; Turner CH; Santiso EE; Gubbins KE
    J Phys Chem B; 2018 Apr; 122(13):3604-3614. PubMed ID: 29241009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we define a unique microscopic pressure in inhomogeneous fluids?
    Shi K; Santiso EE; Gubbins KE
    J Chem Phys; 2021 Feb; 154(8):084502. PubMed ID: 33639773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pressure in interfaces having cylindrical geometry.
    Addington CK; Long Y; Gubbins KE
    J Chem Phys; 2018 Aug; 149(8):084109. PubMed ID: 30193498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase equilibria and interfacial tension of fluids confined in narrow pores.
    Hamada Y; Koga K; Tanaka H
    J Chem Phys; 2007 Aug; 127(8):084908. PubMed ID: 17764295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perspective on the interfacial properties of nanoscopic liquid drops.
    Malijevský A; Jackson G
    J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Phase Equilibrium Conditions in Nanopores.
    Rauter MT; Galteland O; Erdős M; Moultos OA; Vlugt TJH; Schnell SK; Bedeaux D; Kjelstrup S
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32224924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water-wall interaction potential on the properties of nanoconfined water.
    Kumar P; Starr FW; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011202. PubMed ID: 17358138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.
    Milchev A; Egorov SA; Binder K
    Soft Matter; 2017 Mar; 13(9):1888-1903. PubMed ID: 28180230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquids confined in wedge shaped pores: nonuniform pressure induced by pore geometry.
    Cámara LG; Bresme F
    J Chem Phys; 2004 Jun; 120(24):11355-8. PubMed ID: 15268165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid.
    Leoni F; Franzese G
    Phys Rev E; 2016 Dec; 94(6-1):062604. PubMed ID: 28085471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sublimation phenomena of Lennard-Jones fluids in slit nanopores.
    Kanda H; Miyahara M
    J Chem Phys; 2007 Feb; 126(5):054703. PubMed ID: 17302494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.