These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24116734)

  • 1. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework.
    Pullen S; Fei H; Orthaber A; Cohen SM; Ott S
    J Am Chem Soc; 2013 Nov; 135(45):16997-7003. PubMed ID: 24116734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework.
    Fei H; Sampson MD; Lee Y; Kubiak CP; Cohen SM
    Inorg Chem; 2015 Jul; 54(14):6821-8. PubMed ID: 26135673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Metal-Thiocatecholate Functionalized UiO-66 Framework for Photocatalytic Hydrogen Evolution Reaction.
    Zhong H; Chen S; Jiang Z; Hu J; Dong J; Chung LH; Lin QC; Ou W; Yu L; He J
    Small; 2023 Apr; 19(17):e2207266. PubMed ID: 36693790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical Hydrogen Generation Initiated by Oxidative Quenching of the Excited Ru(bpy)3 (2+) * by a Bio-Inspired [2Fe2S] Complex.
    Na Y; Wei P; Zhou L
    Chemistry; 2016 Jul; 22(30):10365-8. PubMed ID: 26879325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst accessibility to chemical reductants in metal-organic frameworks.
    Roy S; Pascanu V; Pullen S; González Miera G; Martín-Matute B; Ott S
    Chem Commun (Camb); 2017 Mar; 53(22):3257-3260. PubMed ID: 28261731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic water reduction and study of the formation of Fe(i)Fe(0) species in diiron catalyst systems.
    Li X; Wang M; Chen L; Wang X; Dong J; Sun L
    ChemSusChem; 2012 May; 5(5):913-9. PubMed ID: 22407945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange.
    Fei H; Pullen S; Wagner A; Ott S; Cohen SM
    Chem Commun (Camb); 2015 Jan; 51(1):66-9. PubMed ID: 25364799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework.
    Fei H; Shin J; Meng YS; Adelhardt M; Sutter J; Meyer K; Cohen SM
    J Am Chem Soc; 2014 Apr; 136(13):4965-73. PubMed ID: 24597832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confining Molecular Photosensitizer and Catalyst in MOF toward Artificial Photosynthesis: Validating Electron Transfer by
    Parambil SRV; Karmakar S; Rahimi FA; Maji TK
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):27821-27831. PubMed ID: 37278439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diiron Dithiolate Complex Induced Helical Structure of Histone and Application in Photochemical Hydrogen Generation.
    Hu X; Chen W; Li S; Sun J; Du K; Xia Q; Feng F
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):19691-19699. PubMed ID: 31117424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [FeFe] Hydrogenase active site model chemistry in a UiO-66 metal-organic framework.
    Pullen S; Roy S; Ott S
    Chem Commun (Camb); 2017 May; 53(37):5227-5230. PubMed ID: 28443863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoexcitation of Fe
    Ezhov R; Ravari AK; Palenik M; Loomis A; Meira DM; Savikhin S; Pushkar Y
    ChemSusChem; 2023 Mar; 16(5):e202202124. PubMed ID: 36479638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport.
    Castner AT; Johnson BA; Cohen SM; Ott S
    J Am Chem Soc; 2021 Jun; 143(21):7991-7999. PubMed ID: 34029060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of two- and three-dimensional electrode platforms for the electrochemical characterization of organometallic catalysts incorporated in non-conducting metal-organic frameworks.
    Mijangos E; Roy S; Pullen S; Lomoth R; Ott S
    Dalton Trans; 2017 Apr; 46(15):4907-4911. PubMed ID: 28345708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex.
    Samuel AP; Co DT; Stern CL; Wasielewski MR
    J Am Chem Soc; 2010 Jul; 132(26):8813-5. PubMed ID: 20536125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.