These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24116841)

  • 1. Integrating the behavioral and neural dynamics of response selection in a dual-task paradigm: a dynamic neural field model of Dux et al. (2009).
    Buss AT; Wifall T; Hazeltine E; Spencer JP
    J Cogn Neurosci; 2014 Feb; 26(2):334-51. PubMed ID: 24116841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response-specific sources of dual-task interference in human pre-motor cortex.
    Marois R; Larson JM; Chun MM; Shima D
    Psychol Res; 2006 Nov; 70(6):436-47. PubMed ID: 16283409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory.
    Derrfuss J; Brass M; von Cramon DY
    Neuroimage; 2004 Oct; 23(2):604-12. PubMed ID: 15488410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study.
    Stelzel C; Schumacher EH; Schubert T; D'Esposito M
    Psychol Res; 2006 Nov; 70(6):514-25. PubMed ID: 16175414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-behavior correlates of optimizing learning through interleaved practice.
    Lin CH; Knowlton BJ; Chiang MC; Iacoboni M; Udompholkul P; Wu AD
    Neuroimage; 2011 Jun; 56(3):1758-72. PubMed ID: 21376126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of attentional focusing during finger movements: A fMRI study.
    Zentgraf K; Lorey B; Bischoff M; Zimmermann K; Stark R; Munzert J
    J Mot Behav; 2009 Nov; 41(6):535-41. PubMed ID: 19567364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable neural effects of task order control and task set maintenance during dual-task processing.
    Stelzel C; Kraft A; Brandt SA; Schubert T
    J Cogn Neurosci; 2008 Apr; 20(4):613-28. PubMed ID: 18052784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.
    Lamm C; Windischberger C; Moser E; Bauer H
    Neuroimage; 2007 Jul; 36(4):1374-86. PubMed ID: 17532647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of dual-task performance after minimizing task-preparation.
    Erickson KI; Colcombe SJ; Wadhwa R; Bherer L; Peterson MS; Scalf PE; Kramer AF
    Neuroimage; 2005 Dec; 28(4):967-79. PubMed ID: 16109493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms of cognitive control: an integrative model of stroop task performance and FMRI data.
    Herd SA; Banich MT; O'Reilly RC
    J Cogn Neurosci; 2006 Jan; 18(1):22-32. PubMed ID: 16417680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic coding of events within the inferior frontal gyrus in a probabilistic selective attention task.
    Vossel S; Weidner R; Fink GR
    J Cogn Neurosci; 2011 Feb; 23(2):414-24. PubMed ID: 20146598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW; Schneider W
    Neuroimage; 2007 Aug; 37(1):343-60. PubMed ID: 17553704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder.
    Remijnse PL; Nielen MM; van Balkom AJ; Cath DC; van Oppen P; Uylings HB; Veltman DJ
    Arch Gen Psychiatry; 2006 Nov; 63(11):1225-36. PubMed ID: 17088503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a symbolic process model as input for model-based fMRI analysis: locating the neural correlates of problem state replacements.
    Borst JP; Taatgen NA; van Rijn H
    Neuroimage; 2011 Sep; 58(1):137-47. PubMed ID: 21703351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paradigm design of sensory-motor and language tests in clinical fMRI.
    Engström M; Ragnehed M; Lundberg P; Söderfeldt B
    Neurophysiol Clin; 2004 Dec; 34(6):267-77. PubMed ID: 15890160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.