These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24116953)
1. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S; Song K; Nguyen TB; Kim N; Lim H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953 [TBL] [Abstract][Full Text] [Related]
2. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning. Ji S; Park J; Lim H Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661 [TBL] [Abstract][Full Text] [Related]
3. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection. Zhang C; Yi P; Peng L; Ni J Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259 [TBL] [Abstract][Full Text] [Related]
4. Glass Flow Evolution and the Mechanism of Antireflective Nanoprotrusion Arrays in Nanoholes by Direct Thermal Imprinting. Feng Y; Liu X; Li K; Gong F; Shen J; Lou Y ACS Appl Mater Interfaces; 2021 Apr; 13(14):16968-16977. PubMed ID: 33787217 [TBL] [Abstract][Full Text] [Related]
5. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns. Galeotti F; Trespidi F; Timò G; Pasini M ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669 [TBL] [Abstract][Full Text] [Related]
6. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection. Wang HP; Lai KY; Lin YR; Lin CA; He JH Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420 [TBL] [Abstract][Full Text] [Related]
7. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Park H; Shin D; Kang G; Baek S; Kim K; Padilla WJ Adv Mater; 2011 Dec; 23(48):5796-800. PubMed ID: 22116618 [TBL] [Abstract][Full Text] [Related]
8. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429 [TBL] [Abstract][Full Text] [Related]
9. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures. Song YM; Jeong Y; Yeo CI; Lee YT Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712 [TBL] [Abstract][Full Text] [Related]
11. Suppression of backscattered diffraction from sub-wavelength 'moth-eye' arrays. Stavroulakis PI; Boden SA; Johnson T; Bagnall DM Opt Express; 2013 Jan; 21(1):1-11. PubMed ID: 23388890 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications. Leem JW; Song YM; Yu JS Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915 [TBL] [Abstract][Full Text] [Related]
13. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D; Bae J; Hong S; Yang H; Kim YB Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196 [TBL] [Abstract][Full Text] [Related]
14. Tailoring broadband antireflection on a silicon surface through two-step silver-assisted chemical etching. Chen CY; Li WJ; Chen HH Chemphyschem; 2012 Apr; 13(6):1415-20. PubMed ID: 22407606 [TBL] [Abstract][Full Text] [Related]
15. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970 [TBL] [Abstract][Full Text] [Related]
16. Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting. Raut HK; Dinachali SS; Loke YC; Ganesan R; Ansah-Antwi KK; Góra A; Khoo EH; Ganesh VA; Saifullah MS; Ramakrishna S ACS Nano; 2015 Feb; 9(2):1305-14. PubMed ID: 25634665 [TBL] [Abstract][Full Text] [Related]
17. Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography. Tian S; Xia X; Sun W; Li W; Li J; Gu C Nanotechnology; 2011 Sep; 22(39):395301. PubMed ID: 21891843 [TBL] [Abstract][Full Text] [Related]
18. Spectrally selective antireflection of nanoimprint lithography-formed 3D spherical structures on film coated with a silver layer. Chiou AH; Chang CW; Ting CJ Sci Rep; 2022 Nov; 12(1):19505. PubMed ID: 36376439 [TBL] [Abstract][Full Text] [Related]
19. Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting. Wang HP; Tsai KT; Lai KY; Wei TC; Wang YL; He JH Opt Express; 2012 Jan; 20(1):A94-103. PubMed ID: 22379674 [TBL] [Abstract][Full Text] [Related]
20. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Dewan R; Fischer S; Meyer-Rochow VB; Özdemir Y; Hamraz S; Knipp D Bioinspir Biomim; 2012 Mar; 7(1):016003. PubMed ID: 22155981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]