BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24117024)

  • 1. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.
    Wang T; Li P; Hauer B; Chigrin DN; Taubner T
    Nano Lett; 2013 Nov; 13(11):5051-5. PubMed ID: 24117024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material.
    Sumikura H; Wang T; Li P; Michel AU; Heßler A; Jung L; Lewin M; Wuttig M; Chigrin DN; Taubner T
    Nano Lett; 2019 Apr; 19(4):2549-2554. PubMed ID: 30920839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures.
    Ellis CT; Tischler JG; Glembocki OJ; Bezares FJ; Giles AJ; Kasica R; Shirey L; Owrutsky JC; Chigrin DN; Caldwell JD
    Sci Rep; 2016 Sep; 6():32959. PubMed ID: 27622525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional surface phonon polaritons in boron nitride nanotubes.
    Xu XG; Ghamsari BG; Jiang JH; Gilburd L; Andreev GO; Zhi C; Bando Y; Golberg D; Berini P; Walker GC
    Nat Commun; 2014 Aug; 5():4782. PubMed ID: 25154586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Enhancement of Second-Harmonic Generation in the Mid-Infrared Using Localized Surface Phonon Polaritons in Subdiffractional Nanostructures.
    Razdolski I; Chen Y; Giles AJ; Gewinner S; Schöllkopf W; Hong M; Wolf M; Giannini V; Caldwell JD; Maier SA; Paarmann A
    Nano Lett; 2016 Nov; 16(11):6954-6959. PubMed ID: 27766887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Plasmon Cavities Made with Silicon Carbide.
    Li K; Fitzgerald JM; Xiao X; Caldwell JD; Zhang C; Maier SA; Li X; Giannini V
    ACS Omega; 2017 Jul; 2(7):3640-3646. PubMed ID: 31457678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In
    Conrads L; Schüler L; Wirth KG; Wuttig M; Taubner T
    Nat Commun; 2024 Apr; 15(1):3472. PubMed ID: 38658601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lifetime and Molecular Coupling in Surface Phonon Polariton Resonators.
    Esfidani SMV; Tadjer MJ; Folland TG
    ACS Omega; 2024 May; 9(19):21136-21143. PubMed ID: 38764696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material.
    Maurya KC; Rao D; Acharya S; Rao P; Pillai AIK; Selvaraja SK; Garbrecht M; Saha B
    Nano Lett; 2022 Jul; 22(13):5182-5190. PubMed ID: 35713183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology-Controlled Reststrahlen Band and Infrared Plasmon Polariton in GaN Nanostructures.
    Maurya KC; Chatterjee A; Shivaprasad SM; Saha B
    Nano Lett; 2022 Dec; 22(23):9606-9613. PubMed ID: 36459090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas.
    Pons-Valencia P; Alfaro-Mozaz FJ; Wiecha MM; Biolek V; Dolado I; Vélez S; Li P; Alonso-González P; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nat Commun; 2019 Jul; 10(1):3242. PubMed ID: 31324759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators.
    Caldwell JD; Glembocki OJ; Francescato Y; Sharac N; Giannini V; Bezares FJ; Long JP; Owrutsky JC; Vurgaftman I; Tischler JG; Wheeler VD; Bassim ND; Shirey LM; Kasica R; Maier SA
    Nano Lett; 2013 Aug; 13(8):3690-7. PubMed ID: 23815389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation.
    Zhang Q; Zhen Z; Yang Y; Gan G; Jariwala D; Cui X
    Opt Express; 2019 Jun; 27(13):18585-18600. PubMed ID: 31252799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures.
    Hajian H; Serebryannikov AE; Ghobadi A; Demirag Y; Butun B; Vandenbosch GAE; Ozbay E
    Sci Rep; 2018 Sep; 8(1):13209. PubMed ID: 30181598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material.
    Li P; Yang X; Maß TW; Hanss J; Lewin M; Michel AK; Wuttig M; Taubner T
    Nat Mater; 2016 Aug; 15(8):870-5. PubMed ID: 27213955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit.
    Autore M; Li P; Dolado I; Alfaro-Mozaz FJ; Esteban R; Atxabal A; Casanova F; Hueso LE; Alonso-González P; Aizpurua J; Nikitin AY; Vélez S; Hillenbrand R
    Light Sci Appl; 2018; 7():17172. PubMed ID: 30839544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of mid-infrared absorption through phonon-plasmon-polariton hybridization in a graphene/hBN/graphene nanodisk array.
    Wang L; Liu J; Ren B; Song J; Jiang Y
    Opt Express; 2021 Jan; 29(2):2288-2298. PubMed ID: 33726427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.
    Dubrovkin AM; Qiang B; Krishnamoorthy HNS; Zheludev NI; Wang QJ
    Nat Commun; 2018 May; 9(1):1762. PubMed ID: 29720587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.