BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24117174)

  • 1. Thin polymer brush decouples biomaterial's micro-/nanotopology and stem cell adhesion.
    Klein Gunnewiek M; Benetti EM; Di Luca A; van Blitterswijk CA; Moroni L; Vancso GJ
    Langmuir; 2013 Nov; 29(45):13843-52. PubMed ID: 24117174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study.
    Russo L; Russo T; Battocchio C; Taraballi F; Gloria A; D'Amora U; De Santis R; Polzonetti G; Nicotra F; Ambrosio L; Cipolla L
    Carbohydr Res; 2015 Mar; 405():39-46. PubMed ID: 25498202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.
    V S S; P V M
    Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications.
    Lee H; Kim G
    J Biomater Sci Polym Ed; 2010; 21(13):1687-99. PubMed ID: 20537249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation.
    Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes.
    Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J
    Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and mesenchymal stem cell response to poly(epsilon-caprolactone) nanowire surfaces for orthopedic tissue engineering.
    Porter JR; Henson A; Ryan S; Popat KC
    Tissue Eng Part A; 2009 Sep; 15(9):2547-59. PubMed ID: 19326968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular interactions on hierarchical poly(ε-caprolactone) nanowire micropatterns.
    Du K; Gan Z
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4643-50. PubMed ID: 22873768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone.
    Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N
    Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ε-caprolactone)-banded spherulites and interaction with MC3T3-E1 cells.
    Wang K; Cai L; Jesse S; Wang S
    Langmuir; 2012 Mar; 28(9):4382-95. PubMed ID: 22313450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion.
    Psarra E; König U; Ueda Y; Bellmann C; Janke A; Bittrich E; Eichhorn KJ; Uhlmann P
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12516-29. PubMed ID: 25651080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.
    Shahrousvand M; Sadeghi GMM; Shahrousvand E; Ghollasi M; Salimi A
    Colloids Surf B Biointerfaces; 2017 Aug; 156():292-304. PubMed ID: 28544961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering.
    Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V
    Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J; Rajeswari R; Shayanti M; Low S; Bongso A; Dev VR; Deepika G; Choon AT; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(2):170-84. PubMed ID: 22370175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Adhesion and Migration on Thickness Gradient Bilayer Polymer Brush Surfaces: Effects of Properties of Polymeric Materials of the Underlayer.
    Afzali Z; Matsushita T; Kogure A; Masuda T; Azuma T; Kushiro K; Kasama T; Miyake R; Takai M
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2605-2617. PubMed ID: 35001615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.