BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 24117238)

  • 61. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity.
    Backe SJ; Woodford MR; Ahanin E; Sager RA; Bourboulia D; Mollapour M
    Subcell Biochem; 2023; 101():319-350. PubMed ID: 36520312
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heat shock protein 90α (HSP90α), a substrate and chaperone of DNA-PK necessary for the apoptotic response.
    Solier S; Kohn KW; Scroggins B; Xu W; Trepel J; Neckers L; Pommier Y
    Proc Natl Acad Sci U S A; 2012 Aug; 109(32):12866-72. PubMed ID: 22753480
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Advances towards Understanding the Mechanism of Action of the Hsp90 Complex.
    Prodromou C; Bjorklund DM
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625528
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity.
    Mollapour M; Tsutsumi S; Truman AW; Xu W; Vaughan CK; Beebe K; Konstantinova A; Vourganti S; Panaretou B; Piper PW; Trepel JB; Prodromou C; Pearl LH; Neckers L
    Mol Cell; 2011 Mar; 41(6):672-81. PubMed ID: 21419342
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis.
    Song X; Wang X; Zhuo W; Shi H; Feng D; Sun Y; Liang Y; Fu Y; Zhou D; Luo Y
    J Biol Chem; 2010 Dec; 285(51):40039-49. PubMed ID: 20937816
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle.
    Li J; Richter K; Reinstein J; Buchner J
    Nat Struct Mol Biol; 2013 Mar; 20(3):326-31. PubMed ID: 23396352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1.
    Xu W; Beebe K; Chavez JD; Boysen M; Lu Y; Zuehlke AD; Keramisanou D; Trepel JB; Prodromou C; Mayer MP; Bruce JE; Gelis I; Neckers L
    Nat Commun; 2019 Jun; 10(1):2574. PubMed ID: 31189925
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cdk2: a genuine protein kinase client of Hsp90 and Cdc37.
    Prince T; Sun L; Matts RL
    Biochemistry; 2005 Nov; 44(46):15287-95. PubMed ID: 16285732
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding.
    Woodford MR; Dunn DM; Blanden AR; Capriotti D; Loiselle D; Prodromou C; Panaretou B; Hughes PF; Smith A; Ackerman W; Haystead TA; Loh SN; Bourboulia D; Schmidt LS; Marston Linehan W; Bratslavsky G; Mollapour M
    Nat Commun; 2016 Jun; 7():12037. PubMed ID: 27353360
    [TBL] [Abstract][Full Text] [Related]  

  • 73. ATM is the primary kinase responsible for phosphorylation of Hsp90α after ionizing radiation.
    Elaimy AL; Ahsan A; Marsh K; Pratt WB; Ray D; Lawrence TS; Nyati MK
    Oncotarget; 2016 Dec; 7(50):82450-82457. PubMed ID: 27738310
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding chaperone specificity: evidence for a 'client code'.
    Omkar S; Rysbayeva A; Truman AW
    Trends Biochem Sci; 2023 Aug; 48(8):662-664. PubMed ID: 37328388
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells.
    Eguchi T; Sogawa C; Ono K; Matsumoto M; Tran MT; Okusha Y; Lang BJ; Okamoto K; Calderwood SK
    Cells; 2020 Mar; 9(3):. PubMed ID: 32204513
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.
    Wang L; Li L; Gu K; Xu XL; Sun Y; You QD
    Curr Drug Targets; 2017; 18(13):1572-1585. PubMed ID: 27231111
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.
    Verma S; Singh A; Mishra A
    J Mol Graph Model; 2012 Jul; 37():27-38. PubMed ID: 22609743
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy.
    Wang X; Song X; Zhuo W; Fu Y; Shi H; Liang Y; Tong M; Chang G; Luo Y
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21288-93. PubMed ID: 19965370
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cdc37 goes beyond Hsp90 and kinases.
    MacLean M; Picard D
    Cell Stress Chaperones; 2003; 8(2):114-9. PubMed ID: 14627196
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The heat shock protein 90-CDC37 chaperone complex is required for signaling by types I and II interferons.
    Shang L; Tomasi TB
    J Biol Chem; 2006 Jan; 281(4):1876-84. PubMed ID: 16280321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.