These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 24117351)
1. Assessing post-anterior cruciate ligament reconstruction ambulation using wireless wearable integrated sensors. Arosha Senanayake SM; Ahmed Malik O; Mohammad Iskandar P; Zaheer D J Med Eng Technol; 2013 Nov; 37(8):498-510. PubMed ID: 24117351 [TBL] [Abstract][Full Text] [Related]
2. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features. Malik OA; Senanayake SM; Zaheer D IEEE J Biomed Health Inform; 2015 Mar; 19(2):453-63. PubMed ID: 24801517 [TBL] [Abstract][Full Text] [Related]
3. 3-D kinematics and neuromuscular signals' integration for post ACL reconstruction recovery assessment. Senanayake SM; Malik OA; Iskandar M; Zaheer D Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7221-5. PubMed ID: 24111411 [TBL] [Abstract][Full Text] [Related]
4. Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension. Alkjær T; Simonsen EB; Magnusson SP; Dyhre-Poulsen P; Aagaard P Knee; 2012 Oct; 19(5):633-9. PubMed ID: 22284964 [TBL] [Abstract][Full Text] [Related]
5. Correlation between anterior cruciate ligament graft obliquity and tibial rotation during dynamic pivoting activities in patients with anatomic anterior cruciate ligament reconstruction: an in vivo examination. Zampeli F; Ntoulia A; Giotis D; Tsiaras VA; Argyropoulou M; Pappas E; Georgoulis AD Arthroscopy; 2012 Feb; 28(2):234-46. PubMed ID: 22078004 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cruciate ligament impingement: the influence of femoral or tibial tunnel positioning at different degrees of knee flexion. Astur DC; Santos CV; Aleluia V; Astur Neto N; Arliani GG; Kaleka CC; Skaf A; Cohen M Arthroscopy; 2013 May; 29(5):913-9. PubMed ID: 23419357 [TBL] [Abstract][Full Text] [Related]
7. Wireless diagnostics. Reaston P; Reaston M; Kuris B IEEE Pulse; 2011; 2(2):20-6. PubMed ID: 21550870 [No Abstract] [Full Text] [Related]
9. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network. Qi Y; Soh CB; Gunawan E; Low KS IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996 [TBL] [Abstract][Full Text] [Related]
10. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes. Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783 [TBL] [Abstract][Full Text] [Related]
11. Predicting daily gait behaviors after anterior cruciate ligament surgery: A case study. Wade E; Lin P; Hemmati S; Sigward S Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6752-5. PubMed ID: 26737843 [TBL] [Abstract][Full Text] [Related]
12. Use of wearable technology for performance assessment: a validation study. Papi E; Osei-Kuffour D; Chen YM; McGregor AH Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613 [TBL] [Abstract][Full Text] [Related]
13. Anatomy and Biomechanics of the Native and Reconstructed Anterior Cruciate Ligament: Surgical Implications. Kraeutler MJ; Wolsky RM; Vidal AF; Bravman JT J Bone Joint Surg Am; 2017 Mar; 99(5):438-445. PubMed ID: 28244915 [No Abstract] [Full Text] [Related]
14. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system. Watanabe T; Saito H; Koike E; Nitta K Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531 [TBL] [Abstract][Full Text] [Related]
15. Automatic identification of inertial sensor placement on human body segments during walking. Weenk D; van Beijnum BJ; Baten CT; Hermens HJ; Veltink PH J Neuroeng Rehabil; 2013 Mar; 10():31. PubMed ID: 23517757 [TBL] [Abstract][Full Text] [Related]
16. Validity of Wearable Sensors at the Shoulder Joint: Combining Wireless Electromyography Sensors and Inertial Measurement Units to Perform Physical Workplace Assessments. Poitras I; Bielmann M; Campeau-Lecours A; Mercier C; Bouyer LJ; Roy JS Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010034 [No Abstract] [Full Text] [Related]
17. EMG-based measures of fatigue during a repetitive squat exercise. Bonato P; Cheng MS; Gonzalez-Cueto J; Leardini A; O'Connor J; Roy SH IEEE Eng Med Biol Mag; 2001; 20(6):133-43. PubMed ID: 11838245 [No Abstract] [Full Text] [Related]
18. Quantifying the Consistency of Wearable Knee Acoustical Emission Measurements During Complex Motions. Toreyin H; Jeong HK; Hersek S; Teague CN; Inan OT IEEE J Biomed Health Inform; 2016 Sep; 20(5):1265-72. PubMed ID: 27305689 [TBL] [Abstract][Full Text] [Related]
19. Effective low-power wearable wireless surface EMG sensor design based on analog-compressed sensing. Balouchestani M; Krishnan S Sensors (Basel); 2014 Dec; 14(12):24305-28. PubMed ID: 25526357 [TBL] [Abstract][Full Text] [Related]
20. Design and Validation of Multichannel Wireless Wearable SEMG System for Real-Time Training Performance Monitoring. Örücü S; Selek M J Healthc Eng; 2019; 2019():4580645. PubMed ID: 31583067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]