These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24117373)

  • 1. Frequency-dependent relationship between resting-state functional magnetic resonance imaging signal power and head motion is localized within distributed association networks.
    Kim J; Van Dijk KR; Libby A; Napadow V
    Brain Connect; 2014 Feb; 4(1):30-9. PubMed ID: 24117373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity.
    Yaesoubi M; Miller RL; Calhoun VD
    PLoS One; 2017; 12(2):e0171647. PubMed ID: 28192457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging.
    White T; Muetzel R; Schmidt M; Langeslag SJ; Jaddoe V; Hofman A; Calhoun VD; Verhulst FC; Tiemeier H
    Brain Connect; 2014 Aug; 4(6):417-27. PubMed ID: 24874884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
    Kim JY; Kim SH; Seo J; Kim SH; Han SW; Nam EJ; Kim SK; Lee HJ; Lee SJ; Kim YT; Chang Y
    Pain; 2013 Sep; 154(9):1792-1797. PubMed ID: 23714266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?
    Pujol J; Macià D; Blanco-Hinojo L; Martínez-Vilavella G; Sunyer J; de la Torre R; Caixàs A; Martín-Santos R; Deus J; Harrison BJ
    Neuroimage; 2014 Nov; 101():87-95. PubMed ID: 24999036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
    Xu H; Su J; Qin J; Li M; Zeng LL; Hu D; Shen H
    Neuroimage; 2018 Jun; 173():127-145. PubMed ID: 29476914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data.
    Lanka P; Deshpande G
    Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Perfusion Pattern Based on the Background Low-Frequency Fluctuation in Resting-State Functional Magnetic Resonance Imaging Data and Its Influence on Resting-State Networks: An Iterative Postprocessing Approach.
    Qian T; Zanchi D; Rodriguez C; Ackermann M; Giannakopoulos P; Haller S
    Brain Connect; 2017 Dec; 7(10):627-634. PubMed ID: 29117709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency and amplitude modulation of resting-state fMRI signals and their functional relevance in normal aging.
    Yang AC; Tsai SJ; Lin CP; Peng CK; Huang NE
    Neurobiol Aging; 2018 Oct; 70():59-69. PubMed ID: 30007165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode.
    Maldjian JA; Davenport EM; Whitlow CT
    Neuroimage; 2014 Aug; 96():88-94. PubMed ID: 24699016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional integration between brain regions at rest occurs in multiple-frequency bands.
    Gohel SR; Biswal BB
    Brain Connect; 2015 Feb; 5(1):23-34. PubMed ID: 24702246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.
    Anderson JS; Zielinski BA; Nielsen JA; Ferguson MA
    Hum Brain Mapp; 2014 Apr; 35(4):1273-83. PubMed ID: 23417795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity.
    Amemiya S; Takao H; Hanaoka S; Ohtomo K
    Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.