These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24118010)

  • 41. Root functioning modifies seasonal climate.
    Lee JE; Oliveira RS; Dawson TE; Fung I
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17576-81. PubMed ID: 16301519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse Helianthus species.
    Mason CM; McGaughey SE; Donovan LA
    J Exp Bot; 2013 Oct; 64(13):4089-99. PubMed ID: 24078673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vessel contents of leaves after excision: a test of the Scholander assumption.
    Tyree MT; Cochard H
    J Exp Bot; 2003 Sep; 54(390):2133-9. PubMed ID: 12885866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple analytical model of evapotranspiration in the presence of roots.
    Cejas CM; Hough LA; Castaing JC; Frétigny C; Dreyfus R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042716. PubMed ID: 25375532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soil nitrogen limitation does not impact nighttime water loss in Populus.
    Howard AR; Donovan LA
    Tree Physiol; 2010 Jan; 30(1):23-31. PubMed ID: 19959599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic changes in root hydraulic properties in response to nitrate availability.
    Gloser V; Zwieniecki MA; Orians CM; Holbrook NM
    J Exp Bot; 2007; 58(10):2409-15. PubMed ID: 17562690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.
    Vadez V; Rao JS; Bhatnagar-Mathur P; Sharma KK
    Plant Biol (Stuttg); 2013 Jan; 15(1):45-52. PubMed ID: 22672619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.
    Martínez-Fernández D; Barroso D; Komárek M
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1732-41. PubMed ID: 26396006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils.
    Draye X; Kim Y; Lobet G; Javaux M
    J Exp Bot; 2010 May; 61(8):2145-55. PubMed ID: 20453027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions.
    Valenzuela-Estrada LR; Richards JH; Diaz A; Eissensat DM
    J Exp Bot; 2009; 60(4):1241-7. PubMed ID: 19188275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots.
    Stahlberg R; Cleland RE; Van Volkenburgh E
    Planta; 2005 Feb; 220(4):550-8. PubMed ID: 15365838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?
    Matimati I; Verboom GA; Cramer MD
    Oecologia; 2014 Aug; 175(4):1129-42. PubMed ID: 24972698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Root hairs enable high transpiration rates in drying soils.
    Carminati A; Passioura JB; Zarebanadkouki M; Ahmed MA; Ryan PR; Watt M; Delhaize E
    New Phytol; 2017 Nov; 216(3):771-781. PubMed ID: 28758687
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations.
    Brooks JR; Meinzer FC; Warren JM; Domec JC; Coulombe R
    Plant Cell Environ; 2006 Jan; 29(1):138-50. PubMed ID: 17086760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits.
    Meunier F; Couvreur V; Draye X; Vanderborght J; Javaux M
    J Math Biol; 2017 Nov; 75(5):1133-1170. PubMed ID: 28255663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A boundary-layer solution for flow at the soil-root interface.
    Severino G; Tartakovsky DM
    J Math Biol; 2015 Jun; 70(7):1645-68. PubMed ID: 25008964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resistance to broomrape (Orobanche spp.) in sunflower (Helianthus annuus L.) is temperature dependent.
    Eizenberg H; Plakhine D; Hershenhorn J; Kleifeld Y; Rubin B
    J Exp Bot; 2003 Apr; 54(385):1305-11. PubMed ID: 12654882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions.
    Miner GL; Bauerle WL
    Plant Cell Environ; 2017 Sep; 40(9):1874-1886. PubMed ID: 28556410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for
    Yu T; Feng Q; Si J; Mitchell PJ; Forster MA; Zhang X; Zhao C
    Ecol Evol; 2018 Mar; 8(5):2607-2616. PubMed ID: 29531680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Night-time conductance in C3 and C4 species: do plants lose water at night?
    Snyder KA; Richards JH; Donovan LA
    J Exp Bot; 2003 Feb; 54(383):861-5. PubMed ID: 12554729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.