These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24118284)

  • 1. Performance of transverse tripoles vs. longitudinal tripoles with anode intensification (AI) in spinal cord stimulation: computational modeling study.
    Sankarasubramanian V; Buitenweg JR; Holsheimer J; Veltink P
    Neuromodulation; 2014 Jul; 17(5):457-63; discussion 463-4. PubMed ID: 24118284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation.
    Sankarasubramanian V; Buitenweg JR; Holsheimer J; Veltink P
    J Neural Eng; 2011 Feb; 8(1):016010. PubMed ID: 21248383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation.
    Sankarasubramanian V; Buitenweg JR; Holsheimer J; Veltink PH
    Neurosurgery; 2013 Mar; 72(3):483-91. PubMed ID: 23151620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple leads programmed to perform as longitudinal guarded cathodes in spinal cord stimulation: a modeling study.
    Sankarasubramanian V; Buitenweg JR; Holsheimer J; Veltink P
    Neuromodulation; 2011; 14(5):401-10; discussion 411. PubMed ID: 21854494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy.
    Durá JL; Solanes C; De Andrés J; Saiz J
    Neuromodulation; 2019 Apr; 22(3):269-279. PubMed ID: 30586207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anode-cathode configuration on paresthesia coverage in spinal cord stimulation.
    Holsheimer J; Wesselink WA
    Neurosurgery; 1997 Sep; 41(3):654-9; discussion 659-60. PubMed ID: 9310984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dermatome selectivity of single-and multiple-current source spinal cord stimulation systems.
    Min X; Kent AR; Rosenberg SP; Fayram TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6246-9. PubMed ID: 25571424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of cord activation during spinal cord stimulation.
    Molnar G; Barolat G
    Neuromodulation; 2014 Jun; 17 Suppl 1():12-21. PubMed ID: 24974772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling.
    Rattay F; Minassian K; Dimitrijevic MR
    Spinal Cord; 2000 Aug; 38(8):473-89. PubMed ID: 10962608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dorsal column steerability with dual parallel leads using dedicated power sources: a computational model.
    Lee D; Gillespie E; Bradley K
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21339729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective control of muscle activation with a multipolar nerve cuff electrode.
    Veraart C; Grill WM; Mortimer JT
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):640-53. PubMed ID: 8244425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of paresthesia steering with a new system for spinal cord stimulation.
    Holsheimer J; Nuttin B; King GW; Wesselink WA; Gybels JM; de Sutter P
    Neurosurgery; 1998 Mar; 42(3):541-7; discussion 547-9. PubMed ID: 9526989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact combinations in epidural spinal cord stimulation. A comparison by computer modeling.
    Holsheimer J; Struijk JJ; Rijkhoff NJ
    Stereotact Funct Neurosurg; 1991; 56(4):220-33. PubMed ID: 1808647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers.
    Struijk JJ; Holsheimer J; van Veen BK; Boom HB
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):104-10. PubMed ID: 2026427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Lead Position and Polarity on Paresthesia Coverage in Spinal Cord Stimulation Therapy: A Computational Study.
    Dura JL; Solanes C; De Andres J; Saiz J
    Neuromodulation; 2022 Jul; 25(5):680-692. PubMed ID: 35131153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode contact configuration and energy consumption in spinal cord stimulation.
    de Vos CC; Hilgerink MP; Buschman HP; Holsheimer J
    Neurosurgery; 2009 Dec; 65(6 Suppl):210-6; discussion 216-7. PubMed ID: 19934997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation.
    Crosby ND; Janik JJ; Grill WM
    J Neurophysiol; 2017 Jan; 117(1):136-147. PubMed ID: 27760823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study.
    Fernandes SR; Salvador R; Wenger C; de Carvalho M; Miranda PC
    J Neural Eng; 2018 Jun; 15(3):036008. PubMed ID: 29386408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do geometric factors influence epidural spinal cord stimulation? A quantitative analysis by computer modeling.
    Holsheimer J; Struijk JJ
    Stereotact Funct Neurosurg; 1991; 56(4):234-49. PubMed ID: 1808648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation.
    Holsheimer J; Struijk JJ; Tas NR
    Med Biol Eng Comput; 1995 Sep; 33(5):676-82. PubMed ID: 8523909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.