These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 24118638)
21. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Kinoshita A; Nakamura Y; Sasaki E; Kyozuka J; Fukuda H; Sawa S Plant Cell Physiol; 2007 Dec; 48(12):1821-5. PubMed ID: 17991631 [TBL] [Abstract][Full Text] [Related]
22. A Collection of Mutants for CLE-Peptide-Encoding Genes in Arabidopsis Generated by CRISPR/Cas9-Mediated Gene Targeting. Yamaguchi YL; Ishida T; Yoshimura M; Imamura Y; Shimaoka C; Sawa S Plant Cell Physiol; 2017 Nov; 58(11):1848-1856. PubMed ID: 29036337 [TBL] [Abstract][Full Text] [Related]
23. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants. Araya T; von Wirén N; Takahashi H Plant Signal Behav; 2014; 9(7):e29302. PubMed ID: 25763500 [TBL] [Abstract][Full Text] [Related]
24. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. Roberts I; Smith S; De Rybel B; Van Den Broeke J; Smet W; De Cokere S; Mispelaere M; De Smet I; Beeckman T J Exp Bot; 2013 Dec; 64(17):5371-81. PubMed ID: 24179095 [TBL] [Abstract][Full Text] [Related]
25. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis. Wieckowski Y; Schiefelbein J Plant Cell; 2012 Jul; 24(7):2839-56. PubMed ID: 22829145 [TBL] [Abstract][Full Text] [Related]
26. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis. Meng L; Feldman LJ Planta; 2010 Oct; 232(5):1061-74. PubMed ID: 20697738 [TBL] [Abstract][Full Text] [Related]
27. Identification of marneral synthase, which is critical for growth and development in Arabidopsis. Go YS; Lee SB; Kim HJ; Kim J; Park HY; Kim JK; Shibata K; Yokota T; Ohyama K; Muranaka T; Arseniyadis S; Suh MC Plant J; 2012 Dec; 72(5):791-804. PubMed ID: 22882494 [TBL] [Abstract][Full Text] [Related]
28. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. Bussell JD; Keech O; Fenske R; Smith SM Plant J; 2013 Aug; 75(4):578-91. PubMed ID: 23621281 [TBL] [Abstract][Full Text] [Related]
29. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Helliwell CA; Chin-Atkins AN; Wilson IW; Chapple R; Dennis ES; Chaudhury A Plant Cell; 2001 Sep; 13(9):2115-25. PubMed ID: 11549767 [TBL] [Abstract][Full Text] [Related]
30. The Ca(2+) -binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer. Kato M; Aoyama T; Maeshima M Plant J; 2013 May; 74(4):690-700. PubMed ID: 23445487 [TBL] [Abstract][Full Text] [Related]
31. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Matsuzaki Y; Ogawa-Ohnishi M; Mori A; Matsubayashi Y Science; 2010 Aug; 329(5995):1065-7. PubMed ID: 20798316 [TBL] [Abstract][Full Text] [Related]
32. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Srivastava R; Liu JX; Guo H; Yin Y; Howell SH Plant J; 2009 Sep; 59(6):930-9. PubMed ID: 19473327 [TBL] [Abstract][Full Text] [Related]
33. Functional analysis of the cotton CLE polypeptide signaling gene family in plant growth and development. Wan K; Lu K; Gao M; Zhao T; He Y; Yang DL; Tao X; Xiong G; Guan X Sci Rep; 2021 Mar; 11(1):5060. PubMed ID: 33658526 [TBL] [Abstract][Full Text] [Related]
34. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Wang CY; Zhang S; Yu Y; Luo YC; Liu Q; Ju C; Zhang YC; Qu LH; Lucas WJ; Wang X; Chen YQ Plant Biotechnol J; 2014 Oct; 12(8):1132-42. PubMed ID: 24975689 [TBL] [Abstract][Full Text] [Related]
35. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development. Yu Y; Song W; Zhai N; Zhang S; Wang J; Wang S; Liu W; Huang CH; Ma H; Chai J; Chang F Nat Commun; 2023 Jun; 14(1):3307. PubMed ID: 37286549 [TBL] [Abstract][Full Text] [Related]
36. CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Sawa S; Kinoshita A; Nakanomyo I; Fukuda H Chem Rec; 2006; 6(6):303-10. PubMed ID: 17304552 [TBL] [Abstract][Full Text] [Related]
37. Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. Stührwohldt N; Ehinger A; Thellmann K; Schaller A Plant Physiol; 2020 Nov; 184(3):1573-1584. PubMed ID: 32907884 [TBL] [Abstract][Full Text] [Related]
38. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Ito Y; Nakanomyo I; Motose H; Iwamoto K; Sawa S; Dohmae N; Fukuda H Science; 2006 Aug; 313(5788):842-5. PubMed ID: 16902140 [TBL] [Abstract][Full Text] [Related]
39. CLE peptide signaling during plant development. Wang G; Fiers M Protoplasma; 2010 Apr; 240(1-4):33-43. PubMed ID: 20016993 [TBL] [Abstract][Full Text] [Related]
40. Characterization of a CLE processing activity. Ni J; Guo Y; Jin H; Hartsell J; Clark SE Plant Mol Biol; 2011 Jan; 75(1-2):67-75. PubMed ID: 21052783 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]