These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 24118699)
1. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Monteil CL; Lafolie F; Laurent J; Clement JC; Simler R; Travi Y; Morris CE Environ Microbiol; 2014 Jul; 16(7):2038-52. PubMed ID: 24118699 [TBL] [Abstract][Full Text] [Related]
2. Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack. Monteil CL; Guilbaud C; Glaux C; Lafolie F; Soubeyrand S; Morris CE Environ Microbiol; 2012 Aug; 14(8):2099-112. PubMed ID: 22188069 [TBL] [Abstract][Full Text] [Related]
4. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. Monteil CL; Bardin M; Morris CE ISME J; 2014 Nov; 8(11):2290-304. PubMed ID: 24722630 [TBL] [Abstract][Full Text] [Related]
5. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. Morris CE; Sands DC; Vinatzer BA; Glaux C; Guilbaud C; Buffière A; Yan S; Dominguez H; Thompson BM ISME J; 2008 Mar; 2(3):321-34. PubMed ID: 18185595 [TBL] [Abstract][Full Text] [Related]
7. Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. Morris CE; Sands DC; Vanneste JL; Montarry J; Oakley B; Guilbaud C; Glaux C mBio; 2010 Jun; 1(3):. PubMed ID: 20802828 [TBL] [Abstract][Full Text] [Related]
8. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. de Araujo GG; Rodrigues F; Gonçalves FLT; Galante D Sci Rep; 2019 May; 9(1):7768. PubMed ID: 31123327 [TBL] [Abstract][Full Text] [Related]
9. Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function. Gavazov K; Ingrisch J; Hasibeder R; Mills RTE; Buttler A; Gleixner G; Pumpanen J; Bahn M Sci Total Environ; 2017 Jul; 590-591():316-324. PubMed ID: 28279534 [TBL] [Abstract][Full Text] [Related]
10. The life history of Pseudomonas syringae: linking agriculture to earth system processes. Morris CE; Monteil CL; Berge O Annu Rev Phytopathol; 2013; 51():85-104. PubMed ID: 23663005 [TBL] [Abstract][Full Text] [Related]
11. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Vinatzer BA; Teitzel GM; Lee MW; Jelenska J; Hotton S; Fairfax K; Jenrette J; Greenberg JT Mol Microbiol; 2006 Oct; 62(1):26-44. PubMed ID: 16942603 [TBL] [Abstract][Full Text] [Related]
12. Ice-nucleating bacteria control the order and dynamics of interfacial water. Pandey R; Usui K; Livingstone RA; Fischer SA; Pfaendtner J; Backus EH; Nagata Y; Fröhlich-Nowoisky J; Schmüser L; Mauri S; Scheel JF; Knopf DA; Pöschl U; Bonn M; Weidner T Sci Adv; 2016 Apr; 2(4):e1501630. PubMed ID: 27152346 [TBL] [Abstract][Full Text] [Related]
13. Impact of temperature on in planta expression of genes involved in synthesis of the Pseudomonas syringae phytotoxin coronatine. Weingart H; Stubner S; Schenk A; Ullrich MS Mol Plant Microbe Interact; 2004 Oct; 17(10):1095-102. PubMed ID: 15497402 [TBL] [Abstract][Full Text] [Related]
14. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Elasri M; Delorme S; Lemanceau P; Stewart G; Laue B; Glickmann E; Oger PM; Dessaux Y Appl Environ Microbiol; 2001 Mar; 67(3):1198-209. PubMed ID: 11229911 [TBL] [Abstract][Full Text] [Related]
15. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. Yu JG; Lim JA; Song YR; Heu S; Kim GH; Koh YJ; Oh CS J Microbiol Biotechnol; 2016 Feb; 26(2):385-93. PubMed ID: 26628254 [TBL] [Abstract][Full Text] [Related]
16. Pseudomonas syringae Increases Water Availability in Leaf Microenvironments via Production of Hygroscopic Syringafactin. Hernandez MN; Lindow SE Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31285194 [TBL] [Abstract][Full Text] [Related]
17. The VirPphA/AvrPtoB family of type III effectors in Pseudomonas syringae. Oguiza JA; Asensio AC Res Microbiol; 2005 Apr; 156(3):298-303. PubMed ID: 15808932 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Xin XF; He SY Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467 [TBL] [Abstract][Full Text] [Related]
19. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
20. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China]. Xiong L; Xu ZF; Wu FZ; Yang WQ; Yin R; Li ZP; Gou XL; Tang SS Ying Yong Sheng Tai Xue Bao; 2014 May; 25(5):1293-9. PubMed ID: 25129927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]