These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2411888)

  • 1. Voltage clamp analysis of tetrodotoxin-sensitive and -insensitive sodium channels in rat muscle cells developing in vitro.
    Gonoi T; Sherman SJ; Catterall WA
    J Neurosci; 1985 Sep; 5(9):2559-64. PubMed ID: 2411888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Conus toxin geographutoxin IL distinguishes two functional sodium channel subtypes in rat muscle cells developing in vitro.
    Gonoi T; Ohizumi Y; Nakamura H; Kobayashi J; Catterall WA
    J Neurosci; 1987 Jun; 7(6):1728-31. PubMed ID: 2439663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different functional states of tetrodotoxin sensitive and tetrodotoxin resistant Na+ channels occur during the in vitro development of rat skeletal muscle.
    Frelin C; Vijverberg HP; Romey G; Vigne P; Lazdunski M
    Pflugers Arch; 1984 Oct; 402(2):121-8. PubMed ID: 6098891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of TTX-sensitive and TTX-insensitive sodium channels of rat myoballs.
    Ruppersberg JP; Schure A; Rüdel R
    Neurosci Lett; 1987 Jul; 78(2):166-70. PubMed ID: 2442674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional differences between two classes of sodium channels in developing rat skeletal muscle.
    Weiss RE; Horn R
    Science; 1986 Jul; 233(4761):361-4. PubMed ID: 2425432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+.
    Frelin C; Cognard C; Vigne P; Lazdunski M
    Eur J Pharmacol; 1986 Mar; 122(2):245-50. PubMed ID: 2423344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium and potassium currents involved in action potential propagation in normal bovine lactotrophs.
    Cobbett P; Ingram CD; Mason WT
    J Physiol; 1987 Nov; 392():273-99. PubMed ID: 2451724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres.
    Conti F; Neumcke B; Nonner W; Stämpfli R
    J Physiol; 1980 Nov; 308():217-39. PubMed ID: 6262498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current.
    Aggarwal R; Shorofsky SR; Goldman L; Balke CW
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):353-69. PubMed ID: 9423179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia.
    Ogata N; Tatebayashi H
    J Physiol; 1993 Jul; 466():9-37. PubMed ID: 8410717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia.
    Rush AM; Bräu ME; Elliott AA; Elliott JR
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):771-89. PubMed ID: 9714859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TTX-sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells.
    Berra-Romani R; Blaustein MP; Matteson DR
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H137-45. PubMed ID: 15961372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+.
    Moczydlowski E; Garber SS; Miller C
    J Gen Physiol; 1984 Nov; 84(5):665-86. PubMed ID: 6096478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent.
    Trezise DJ; John VH; Xie XM
    Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of ultra-short-acting beta1-blockers on voltage-gated tetrodotoxin-resistant Na+ channels in rat sensory neurons.
    Tanahashi S; Iida H; Dohi S; Oda A; Osawa Y; Yamaguchi S
    Eur J Anaesthesiol; 2009 Mar; 26(3):196-200. PubMed ID: 19237982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Na(+) flow on Cd(2+) block of tetrodotoxin-resistant Na(+) channels.
    Kuo CC; Lin TJ; Hsieh CP
    J Gen Physiol; 2002 Aug; 120(2):159-72. PubMed ID: 12149278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells.
    Lemaire S; Piot C; Seguin J; Nargeot J; Richard S
    Recept Channels; 1995; 3(2):71-81. PubMed ID: 8581402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrodotoxin-sensitive calcium-conducting channels in the rat hippocampal CA1 region.
    Akaike N; Takahashi K
    J Physiol; 1992 May; 450():529-46. PubMed ID: 1331428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium channel distribution in normal and denervated rodent and snake skeletal muscle.
    Caldwell JH; Milton RL
    J Physiol; 1988 Jul; 401():145-61. PubMed ID: 2459372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrodotoxin-sensitive voltage-dependent Na currents recorded from Xenopus oocytes injected with mammalian cardiac muscle RNA.
    Sutton F; Davidson N; Lester HA
    Brain Res; 1988 Apr; 427(2):187-91. PubMed ID: 2454698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.