These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2411893)

  • 21. Differences in matrix vesicle concentration among growth plate zones.
    Buckwalter JA; Mower D; Schaeffer J
    J Orthop Res; 1987; 5(2):157-63. PubMed ID: 3572586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cartilage canals in the chicken embryo are involved in the process of endochondral bone formation within the epiphyseal growth plate.
    Blumer MJ; Longato S; Fritsch H
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jul; 279(1):692-700. PubMed ID: 15224411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways.
    Wang Y; Middleton F; Horton JA; Reichel L; Farnum CE; Damron TA
    Bone; 2004 Dec; 35(6):1273-93. PubMed ID: 15589209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The replacement processes of growth plate cartilage to bone in endochondral ossification of mandibular condyle].
    Sasaki T; Kim TW; Debari K; Nagamine H
    Kaibogaku Zasshi; 1996 Apr; 71(2):106-14. PubMed ID: 8741279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ levels of intracellular Ca2+ and pH in avian growth plate cartilage.
    Wu LN; Wuthier MG; Genge BR; Wuthier RE
    Clin Orthop Relat Res; 1997 Feb; (335):310-24. PubMed ID: 9020233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme histochemical localisation of alkaline phosphatase activity in osteogenesis imperfecta bone and growth plate: a preliminary study.
    Sarathchandra P; Cassella JP; Ali SY
    Micron; 2005; 36(7-8):715-20. PubMed ID: 16182549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine protease characteristics of the proteoglycanase activity from normal and pseudoxanthoma elasticum (PXE) fibroblasts.
    Gordon SG; Hinkle LL; Shaw E
    J Lab Clin Med; 1983 Sep; 102(3):400-10. PubMed ID: 6350511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of matrix metalloproteinases during vascularization and ossification of normal and impaired avian growth plate.
    Hasky-Negev M; Simsa S; Tong A; Genina O; Monsonego Ornan E
    J Anim Sci; 2008 Jun; 86(6):1306-15. PubMed ID: 18344292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.
    Jingushi S; Scully SP; Joyce ME; Sugioka Y; Bolander ME
    J Orthop Res; 1995 Sep; 13(5):761-8. PubMed ID: 7472755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. m-calpain in rat growth plate chondrocyte cultures: its involvement in the matrix mineralization process.
    Yasuda T; Shimizu K; Nakagawa Y; Yamamoto S; Niibayashi H; Yamamuro T
    Dev Biol; 1995 Jul; 170(1):159-68. PubMed ID: 7601306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification.
    Shimazu A; Nah HD; Kirsch T; Koyama E; Leatherman JL; Golden EB; Kosher RA; Pacifici M
    Exp Cell Res; 1996 Nov; 229(1):126-36. PubMed ID: 8940256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of collagens I, II, X, and XI and aggrecan mRNAs by bovine growth plate chondrocytes in situ.
    Sandell LJ; Sugai JV; Trippel SB
    J Orthop Res; 1994 Jan; 12(1):1-14. PubMed ID: 8113931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate.
    Poole AR; Pidoux I; Rosenberg L
    J Cell Biol; 1982 Feb; 92(2):249-60. PubMed ID: 7037793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. L-type calcium channels in growth plate chondrocytes participate in endochondral ossification.
    Mancilla EE; Galindo M; Fertilio B; Herrera M; Salas K; Gatica H; Goecke A
    J Cell Biochem; 2007 May; 101(2):389-98. PubMed ID: 17243114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endochondral ossification in vitro is influenced by mechanical bending.
    Trepczik B; Lienau J; Schell H; Epari DR; Thompson MS; Hoffmann JE; Kadow-Romacker A; Mundlos S; Duda GN
    Bone; 2007 Mar; 40(3):597-603. PubMed ID: 17141595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron microscopic analysis of articular cartilage proteoglycan degradation by growth plate enzymes.
    Buckwalter JA; Ehrlich MG; Armstrong AL; Mankin HJ
    J Orthop Res; 1987; 5(1):128-32. PubMed ID: 3819904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopic study of condylar cartilage of rat mandible stained with ruthenium red: proteoglycans and hypertrophic chondrocytes.
    Yoshioka C; Yagi T
    J Craniofac Genet Dev Biol; 1989; 9(3):303-14. PubMed ID: 2482300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of vitamin D3 on proteoglycan degradation of growth cartilage.
    Uchida A; Shimomura Y
    Clin Orthop Relat Res; 1988 May; (230):245-50. PubMed ID: 2835197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of electromagnetic fields on endochondral bone formation.
    Ciombor DM; Aaron RK
    J Cell Biochem; 1993 May; 52(1):37-41. PubMed ID: 8320273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collagenase and gelatinase production by calcifying growth plate chondrocytes.
    Brown RA; Kayser M; McLaughlin B; Weiss JB
    Exp Cell Res; 1993 Sep; 208(1):1-9. PubMed ID: 8395392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.