BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24120169)

  • 1. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.
    Qi P; Zhang D; Wan Y
    Anal Chim Acta; 2013 Oct; 800():65-70. PubMed ID: 24120169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomposite prepared from ZnS nanoparticles and molecular sieves nanoparticles by ion exchange method: characterization and its photocatalytic activity.
    Pourahmad A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():193-8. PubMed ID: 23261613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic degradation of methylene blue with Fe doped ZnS nanoparticles.
    Chauhan R; Kumar A; Chaudhary RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():250-6. PubMed ID: 23732620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface-mediated synthesis of monodisperse ZnS nanoparticles with sulfate-reducing bacterium culture.
    Liang Z; Mu J; Mu Y; Shi J; Hao W; Dong X; Yu H
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S106-9. PubMed ID: 25078810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles.
    Soltani N; Saion E; Hussein MZ; Erfani M; Abedini A; Bahmanrokh G; Navasery M; Vaziri P
    Int J Mol Sci; 2012 Sep; 13(10):12242-58. PubMed ID: 23202896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites.
    Franco A; Neves MC; Carrott MM; Mendonça MH; Pereira MI; Monteiro OC
    J Hazard Mater; 2009 Jan; 161(1):545-50. PubMed ID: 18495340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1.
    Xiao X; Ma XB; Yuan H; Liu PC; Lei YB; Xu H; Du DL; Sun JF; Feng YJ
    J Hazard Mater; 2015 May; 288():134-9. PubMed ID: 25698574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.
    Qi P; Zhang D; Wan Y
    Talanta; 2014 Nov; 129():270-5. PubMed ID: 25127594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of ZnS-graphene nanocomposites under electric furnace and photocatalytic degradation of organic dyes.
    Park HS; Ko WB
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8646-53. PubMed ID: 25958578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Yield Extracellular Biosynthesis of ZnS Quantum Dots through a Unique Molecular Mediation Mechanism by the Peculiar Extracellular Proteins Secreted by a Mixed Sulfate Reducing Bacteria.
    Qi S; Yang S; Chen J; Niu T; Yang Y; Xin B
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10442-10451. PubMed ID: 30785253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA.
    Xin B; Huang Q; Chen S; Tang X
    Biotechnol Prog; 2008; 24(5):1171-7. PubMed ID: 19194929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst.
    Sohrabnezhad Sh
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):228-35. PubMed ID: 21733749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.
    Qi P; Zhang D; Zeng Y; Wan Y
    Talanta; 2016 Jan; 147():142-6. PubMed ID: 26592588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.
    Castillo J; Pérez-López R; Caraballo MA; Nieto JM; Martins M; Costa MC; Olías M; Cerón JC; Tucoulou R
    Sci Total Environ; 2012 Apr; 423():176-84. PubMed ID: 22414495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes.
    Pouretedal HR; Norozi A; Keshavarz MH; Semnani A
    J Hazard Mater; 2009 Mar; 162(2-3):674-81. PubMed ID: 18603365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of operational variables and kinetic modeling for photocatalytic removal of Direct Blue 14 from aqueous media by ZnS nanoparticles.
    Mehrizad A; Gharbani P
    J Water Health; 2017 Oct; 15(6):955-965. PubMed ID: 29215359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles.
    Meerabai Devi L; Negi DP
    Nanotechnology; 2011 Jun; 22(24):245502. PubMed ID: 21508450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly luminescent and biocompatible, L-citrulline-capped ZnS:Mn nanocrystals for rapid screening of metal accumulating Lysinibacillus fusiformis bacteria.
    Sajimol AM; Roselin A; Sreevalsa VG; Deepa GD; Bhat Sarita G; Jayalekshmi S
    Luminescence; 2013; 28(4):461-7. PubMed ID: 23494908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles.
    Barnard AS; Feigl CA; Russo SP
    Nanoscale; 2010 Oct; 2(10):2294-301. PubMed ID: 20820648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence and photoconductivity of ZnS:Mn(2+) nanoparticles synthesized via co-precipitation method.
    Kripal R; Gupta AK; Mishra SK; Srivastava RK; Pandey AC; Prakash SG
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 76(5):523-30. PubMed ID: 20452818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.