BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24120169)

  • 21. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.
    Takahashi Y; Suto K; Inoue C; Chida T
    J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation.
    Sharifi A; Montazerghaem L; Naeimi A; Abhari AR; Vafaee M; Ali GAM; Sadegh H
    J Environ Manage; 2019 Oct; 247():624-632. PubMed ID: 31279139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties.
    Yu X; Yu J; Cheng B; Huang B
    Chemistry; 2009 Jul; 15(27):6731-9. PubMed ID: 19499559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore.
    Torimoto T; Adachi T; Okazaki K; Sakuraoka M; Shibayama T; Ohtani B; Kudo A; Kuwabata S
    J Am Chem Soc; 2007 Oct; 129(41):12388-9. PubMed ID: 17887678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.
    Shuai Y; Liu C; Wang J; Cui X; Nie L
    Analyst; 2013 Jun; 138(11):3259-63. PubMed ID: 23616983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials.
    Hong Y; Zhang J; Wang X; Wang Y; Lin Z; Yu J; Huang F
    Nanoscale; 2012 Apr; 4(9):2859-62. PubMed ID: 22456630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of metal ion on optical, photoluminescence, morphological, and photocatalytic properties of ZnS nanoparticles.
    Vijayan S; Umadevi G; Mariappan R; Kumar CS; Karthikeyan A
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78308-78323. PubMed ID: 37269509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films.
    Moon JW; Ivanov IN; Joshi PC; Armstrong BL; Wang W; Jung H; Rondinone AJ; Jellison GE; Meyer HM; Jang GG; Meisner RA; Duty CE; Phelps TJ
    Acta Biomater; 2014 Oct; 10(10):4474-83. PubMed ID: 24932768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient degradation of rhodamine B by magnetically separable ZnS-ZnFe
    Zhu B; Cheng H; Ma J; Kong Y; Komarneni S
    Chemosphere; 2019 Dec; 237():124547. PubMed ID: 31549659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bleaching of Congo red in the presence of ZnS nanoparticles, with dopant of Co2+ ion, as photocatalyst under UV and sunlight irradiations.
    Pouretedal HR; Beigy H; Keshavarz MH
    Environ Technol; 2010 Oct; 31(11):1183-90. PubMed ID: 21046948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe.
    Rajabi HR; Shamsipur M; Khosravi AA; Khani O; Yousefi MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():256-62. PubMed ID: 23434552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photocatalytic degradation of basic blue 9 by CoS nanoparticles supported on AlMCM-41 material as a catalyst.
    Sohrabnezhad Sh; Pourahmad A; Radaee E
    J Hazard Mater; 2009 Oct; 170(1):184-90. PubMed ID: 19473761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of magnetically recoverable ZnS-WO
    Palanisamy G; Bhuvaneswari K; Bharathi G; Pazhanivel T; Grace AN; Pasha SKK
    Chemosphere; 2021 Jun; 273():129687. PubMed ID: 33497986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst.
    Zhang W; Zhong X
    Inorg Chem; 2011 May; 50(9):4065-72. PubMed ID: 21456555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels.
    Fu X; Huang K; Liu S
    J Microbiol Methods; 2009 Dec; 79(3):367-70. PubMed ID: 19799940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic and photocatalytic studies on Zn
    Manohar A; Krishnamoorthi C
    J Photochem Photobiol B; 2017 Dec; 177():95-104. PubMed ID: 29111485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective and specific detection of sulfate-reducing bacteria using potentiometric stripping analysis.
    Wan Y; Zhang D; Hou B
    Talanta; 2010 Sep; 82(4):1608-11. PubMed ID: 20801381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of ZnS nanoparticles deposited on montmorillonite.
    Kozák O; Praus P; Kočí K; Klementová M
    J Colloid Interface Sci; 2010 Dec; 352(2):244-51. PubMed ID: 20887999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides.
    Bai HJ; Zhang ZM; Gong J
    Biotechnol Lett; 2006 Jul; 28(14):1135-9. PubMed ID: 16794769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.