These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24120459)

  • 1. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.
    Mostbauer P; Lombardi L; Olivieri T; Lenz S
    Waste Manag; 2014 Jan; 34(1):125-33. PubMed ID: 24120459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.
    Fontseré Obis M; Germain P; Troesch O; Spillemaecker M; Benbelkacem H
    Waste Manag; 2017 Feb; 60():388-396. PubMed ID: 27324926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the origin of MSWI bottom ash on the H
    Fontseré Obis M; Germain P; Bouzahzah H; Richioud A; Benbelkacem H
    Waste Manag; 2017 Dec; 70():158-169. PubMed ID: 28935375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.
    Ducom G; Radu-Tirnoveanu D; Pascual C; Benadda B; Germain P
    J Hazard Mater; 2009 Jul; 166(2-3):1102-8. PubMed ID: 19147284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.
    Kong Q; Yao J; Qiu Z; Shen D
    Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of biogas upgrading technologies.
    Starr K; Gabarrell X; Villalba G; Talens L; Lombardi L
    Waste Manag; 2012 May; 32(5):991-9. PubMed ID: 22230660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mswi bottom ash for upgrading of biogas and landfill gas.
    Mostbauer P; Lenz S; Lechner P
    Environ Technol; 2008 Jul; 29(7):757-64. PubMed ID: 18697517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill.
    Yao J; Chen L; Zhu H; Shen D; Qiu Z
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10401-10409. PubMed ID: 28281059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of hydrogen sulfide gas and landfill leachate treatment using coal bottom ash.
    Lin CY; Hesu PH; Yang DH
    J Air Waste Manag Assoc; 2001 Jun; 51(6):939-45. PubMed ID: 11417684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Wu H; Zhu Y; Bian S; Ko JH; Li SFY; Xu Q
    Chemosphere; 2018 Mar; 195():40-47. PubMed ID: 29253788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of MSWI bottom ash codisposed with MSW on landfill stabilization with different operational modes.
    Li WB; Yao J; Malik Z; Zhou GD; Dong M; Shen DS
    Biomed Res Int; 2014; 2014():167197. PubMed ID: 24779006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.
    Kim GW; Ho A; Kim PJ; Kim SY
    Waste Manag; 2016 Sep; 55():306-12. PubMed ID: 27067424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated carbonation of wood combustion ash for CO
    Lombardi L; Costa G; Spagnuolo R
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35855-35865. PubMed ID: 29748811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the impact of heavy rain on leaching behavior of municipal solid waste incineration bottom ash (MSWI BA) in semi-aerobic landfill.
    Linh HN; Tamura H; Komiya T; Saffarzadeh A; Shimaoka T
    Waste Manag; 2020 Jul; 113():280-293. PubMed ID: 32559698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of waste input and combustion technology on MSWI bottom ash quality.
    Rendek E; Ducom G; Germain P
    Waste Manag; 2007; 27(10):1403-7. PubMed ID: 17509859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Municipal solid waste incineration (MSWI) ash co-disposal: Influence on per- and polyfluoroalkyl substances (PFAS) concentration in landfill leachate.
    Liu Y; Mendoza-Perilla P; Clavier KA; Tolaymat TM; Bowden JA; Solo-Gabriele HM; Townsend TG
    Waste Manag; 2022 May; 144():49-56. PubMed ID: 35306465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of two different types of reactors for CO
    Lombardi L; Carnevale EA; Pecorini I
    Waste Manag; 2016 Dec; 58():287-298. PubMed ID: 27693482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management.
    Klein R; Baumann T; Kahapka E; Niessner R
    J Hazard Mater; 2001 May; 83(3):265-80. PubMed ID: 11348737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous CO(2) capture and MSWI fly ash stabilization, utilizing novel dynamic equipment.
    Jiang JG; Du XJ; Chen MZ; Zhang C
    Environ Pollut; 2009 Nov; 157(11):2933-8. PubMed ID: 19576668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.