BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24120529)

  • 1. Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from "omics" approaches.
    Winck FV; Páez Melo DO; González Barrios AF
    J Proteomics; 2013 Dec; 94():207-18. PubMed ID: 24120529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae).
    Lachmann SC; Maberly SC; Spijkerman E
    J Phycol; 2016 Dec; 52(6):1051-1063. PubMed ID: 27624741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.
    Nguyen HM; Baudet M; Cuiné S; Adriano JM; Barthe D; Billon E; Bruley C; Beisson F; Peltier G; Ferro M; Li-Beisson Y
    Proteomics; 2011 Nov; 11(21):4266-73. PubMed ID: 21928291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algal glycobiotechnology: omics approaches for strain improvement.
    Sirohi R; Joun J; Choi HI; Gaur VK; Sim SJ
    Microb Cell Fact; 2021 Aug; 20(1):163. PubMed ID: 34419059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.
    Garibay-Hernández A; Barkla BJ; Vera-Estrella R; Martinez A; Pantoja O
    Plant Physiol; 2017 Jan; 173(1):390-416. PubMed ID: 27837088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics Technologies for Microalgae-based Fuels and Chemicals: Challenges and Opportunities.
    Khan AZ; Shahid A; Cheng H; Mahboob S; Al-Ghanim KA; Bilal M; Liang F; Nawaz MZ
    Protein Pept Lett; 2018; 25(2):99-107. PubMed ID: 29359650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.
    Mastrobuoni G; Irgang S; Pietzke M; Assmus HE; Wenzel M; Schulze WX; Kempa S
    BMC Genomics; 2012 May; 13():215. PubMed ID: 22651860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World.
    Rai V; Karthikaichamy A; Das D; Noronha S; Wangikar PP; Srivastava S
    OMICS; 2016 Jul; 20(7):387-99. PubMed ID: 27315140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture.
    Wang Y; Duanmu D; Spalding MH
    Photosynth Res; 2011 Sep; 109(1-3):115-22. PubMed ID: 21409558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.
    Liu C; Wang X; Wang X; Sun C
    Extremophiles; 2016 Jul; 20(4):437-50. PubMed ID: 27161450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.
    Gargouri M; Park JJ; Holguin FO; Kim MJ; Wang H; Deshpande RR; Shachar-Hill Y; Hicks LM; Gang DR
    J Exp Bot; 2015 Aug; 66(15):4551-66. PubMed ID: 26022256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii.
    Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H
    Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.
    Takeuchi T; Benning C
    Biotechnol Biofuels; 2019; 12():292. PubMed ID: 31890020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of phenol by Chlamydomonas reinhardtii.
    Nazos TT; Mavroudakis L; Pergantis SA; Ghanotakis DF
    Photosynth Res; 2020 Jun; 144(3):383-395. PubMed ID: 32358649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii.
    Milito A; Aschern M; McQuillan JL; Yang JS
    J Exp Bot; 2023 Jul; 74(13):3833-3850. PubMed ID: 37025006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas.
    Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H
    J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance.
    Pandita D; Pandita A; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Al-Yafrasi MA; Al-Mana FA; Elansary HO
    Cells; 2021 May; 10(6):. PubMed ID: 34071113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas.
    Tsai CH; Warakanont J; Takeuchi T; Sears BB; Moellering ER; Benning C
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15833-8. PubMed ID: 25313078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.