BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24120544)

  • 21. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production.
    Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM
    Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of surface properties of zinc oxide nanoparticles on their cytotoxicity.
    Altunbek M; Baysal A; Çulha M
    Colloids Surf B Biointerfaces; 2014 Sep; 121():106-13. PubMed ID: 25042418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment.
    Pandey N; Dhiman S; Srivastava T; Majumder S
    Chem Biol Interact; 2016 Jul; 254():221-30. PubMed ID: 27270449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells.
    Xi WS; Tang H; Liu YY; Liu CY; Gao Y; Cao A; Liu Y; Chen Z; Wang H
    J Appl Toxicol; 2020 May; 40(5):567-577. PubMed ID: 31869448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of structure-activity relationship for metal oxide nanoparticles.
    Liu R; Zhang HY; Ji ZX; Rallo R; Xia T; Chang CH; Nel A; Cohen Y
    Nanoscale; 2013 Jun; 5(12):5644-53. PubMed ID: 23689214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity.
    Wang Z; Li N; Zhao J; White JC; Qu P; Xing B
    Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549.
    Foldbjerg R; Dang DA; Autrup H
    Arch Toxicol; 2011 Jul; 85(7):743-50. PubMed ID: 20428844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells.
    Abbott Chalew TE; Schwab KJ
    Cell Biol Toxicol; 2013 Apr; 29(2):101-16. PubMed ID: 23468361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions.
    Dimkpa CO; Calder A; Britt DW; McLean JE; Anderson AJ
    Environ Pollut; 2011 Jul; 159(7):1749-56. PubMed ID: 21550151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells.
    Hamzeh M; Sunahara GI
    Toxicol In Vitro; 2013 Mar; 27(2):864-73. PubMed ID: 23274916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.
    Heng BC; Zhao X; Xiong S; Ng KW; Boey FY; Loo JS
    Arch Toxicol; 2011 Jun; 85(6):695-704. PubMed ID: 20938647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of surface-modifying ligands on the colloidal stability of ZnO nanoparticle dispersions in in vitro cytotoxicity test media.
    Kwon D; Park J; Park J; Choi SY; Yoon TH
    Int J Nanomedicine; 2014; 9 Suppl 2(Suppl 2):57-65. PubMed ID: 25565826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability.
    Semisch A; Ohle J; Witt B; Hartwig A
    Part Fibre Toxicol; 2014 Feb; 11():10. PubMed ID: 24520990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes.
    Wang Y; Yao C; Li C; Ding L; Liu J; Dong P; Fang H; Lei Z; Shi G; Wu M
    Nanoscale; 2015 Aug; 7(30):13105-15. PubMed ID: 26176908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric.
    Ho M; Wu KY; Chein HM; Chen LC; Cheng TJ
    Inhal Toxicol; 2011 Dec; 23(14):947-56. PubMed ID: 22122307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity.
    Kao YY; Chen YC; Cheng TJ; Chiung YM; Liu PS
    Toxicol Sci; 2012 Feb; 125(2):462-72. PubMed ID: 22112499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.