These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24120869)

  • 1. Using micromanipulation to analyze control of vertebrate meiotic spindle size.
    Takagi J; Itabashi T; Suzuki K; Kapoor TM; Shimamoto Y; Ishiwata S
    Cell Rep; 2013 Oct; 5(1):44-50. PubMed ID: 24120869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model predicts Xenopus meiotic spindle organization.
    Loughlin R; Heald R; Nédélec F
    J Cell Biol; 2010 Dec; 191(7):1239-49. PubMed ID: 21173114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked.
    Shirasu-Hiza M; Perlman ZE; Wittmann T; Karsenti E; Mitchison TJ
    Curr Biol; 2004 Nov; 14(21):1941-5. PubMed ID: 15530396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle.
    Brown KS; Blower MD; Maresca TJ; Grammer TC; Harland RM; Heald R
    J Cell Biol; 2007 Mar; 176(6):765-70. PubMed ID: 17339377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of Survivin in spindle assembly in Xenopus egg extracts.
    Canovas PM; Guadagno TM
    J Cell Biochem; 2007 Jan; 100(1):217-29. PubMed ID: 16888809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
    Heald R; Tournebize R; Habermann A; Karsenti E; Hyman A
    J Cell Biol; 1997 Aug; 138(3):615-28. PubMed ID: 9245790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule plus-end dynamics in Xenopus egg extract spindles.
    Tirnauer JS; Salmon ED; Mitchison TJ
    Mol Biol Cell; 2004 Apr; 15(4):1776-84. PubMed ID: 14767058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slide-and-cluster models for spindle assembly.
    Burbank KS; Mitchison TJ; Fisher DS
    Curr Biol; 2007 Aug; 17(16):1373-83. PubMed ID: 17702580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro.
    Krauss SW; Lee G; Chasis JA; Mohandas N; Heald R
    J Biol Chem; 2004 Jun; 279(26):27591-8. PubMed ID: 15102852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanics of the vertebrate meiotic spindle examined by stretching along the pole-to-pole axis.
    Takagi J; Itabashi T; Suzuki K; Shimamoto Y; Kapoor TM; Ishiwata S
    Biophys J; 2014 Feb; 106(3):735-40. PubMed ID: 24507614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Katanin contributes to interspecies spindle length scaling in Xenopus.
    Loughlin R; Wilbur JD; McNally FJ; Nédélec FJ; Heald R
    Cell; 2011 Dec; 147(6):1397-407. PubMed ID: 22153081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering membrane topology with Sar1 does not impair spindle assembly in Xenopus egg extracts.
    Riggs B; Bergman ZJ; Heald R
    Cytoskeleton (Hoboken); 2012 Aug; 69(8):591-9. PubMed ID: 22605651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.
    Houghtaling BR; Yang G; Matov A; Danuser G; Kapoor TM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15338-43. PubMed ID: 19706424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts.
    Verde F; Dogterom M; Stelzer E; Karsenti E; Leibler S
    J Cell Biol; 1992 Sep; 118(5):1097-108. PubMed ID: 1387400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Profiling of Microtubule Self-organization in M-phase.
    Rosas-Salvans M; Cavazza T; Espadas G; Sabido E; Vernos I
    Mol Cell Proteomics; 2018 Oct; 17(10):1991-2004. PubMed ID: 29970457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHD4 is a RanGTP-dependent MAP that stabilizes microtubules and regulates bipolar spindle formation.
    Yokoyama H; Nakos K; Santarella-Mellwig R; Rybina S; Krijgsveld J; Koffa MD; Mattaj IW
    Curr Biol; 2013 Dec; 23(24):2443-51. PubMed ID: 24268414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts.
    Dikovskaya D; Newton IP; Näthke IS
    Mol Biol Cell; 2004 Jun; 15(6):2978-91. PubMed ID: 15075372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple domains of human CLASP contribute to microtubule dynamics and organization in vitro and in Xenopus egg extracts.
    Patel K; Nogales E; Heald R
    Cytoskeleton (Hoboken); 2012 Mar; 69(3):155-65. PubMed ID: 22278908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Distinct Microtubule Arrays Determine the Length and Force Response of the Meiotic Spindle.
    Takagi J; Sakamoto R; Shiratsuchi G; Maeda YT; Shimamoto Y
    Dev Cell; 2019 Apr; 49(2):267-278.e5. PubMed ID: 30982663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the micromechanics of the cell division apparatus.
    Shimamoto Y; Kapoor TM
    Methods Cell Biol; 2018; 145():173-190. PubMed ID: 29957203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.