BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 24121022)

  • 61. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum.
    Sanz S; Bandini G; Ospina D; Bernabeu M; Mariño K; Fernández-Becerra C; Izquierdo L
    J Biol Chem; 2013 Jun; 288(23):16506-16517. PubMed ID: 23615908
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clinical manifestations and molecular mechanisms in the changing paradigm of vivax malaria in India.
    Gupta P; Sharma R; Chandra J; Kumar V; Singh R; Pande V; Singh V
    Infect Genet Evol; 2016 Apr; 39():317-324. PubMed ID: 26876067
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes.
    Dharia NV; Bright AT; Westenberger SJ; Barnes SW; Batalov S; Kuhen K; Borboa R; Federe GC; McClean CM; Vinetz JM; Neyra V; Llanos-Cuentas A; Barnwell JW; Walker JR; Winzeler EA
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):20045-50. PubMed ID: 21037109
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The redox systems of Plasmodium falciparum and Plasmodium vivax: comparison, in silico analyses and inhibitor studies.
    Mohring F; Pretzel J; Jortzik E; Becker K
    Curr Med Chem; 2014; 21(15):1728-56. PubMed ID: 24304272
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Natural antisense transcript and its mechanism of gene regulation].
    Xie ZH
    Yi Chuan; 2010 Feb; 32(2):122-8. PubMed ID: 20176555
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms.
    Lapidot M; Pilpel Y
    EMBO Rep; 2006 Dec; 7(12):1216-22. PubMed ID: 17139297
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulation and trafficking of three distinct 18 S ribosomal RNAs during development of the malaria parasite.
    Li J; Gutell RR; Damberger SH; Wirtz RA; Kissinger JC; Rogers MJ; Sattabongkot J; McCutchan TF
    J Mol Biol; 1997 Jun; 269(2):203-13. PubMed ID: 9191065
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plasmodium vivax readiness to transmit: implication for malaria eradication.
    Adapa SR; Taylor RA; Wang C; Thomson-Luque R; Johnson LR; Jiang RHY
    BMC Syst Biol; 2019 Jan; 13(1):5. PubMed ID: 30634978
    [TBL] [Abstract][Full Text] [Related]  

  • 69.
    Bourgard C; Albrecht L; Kayano ACAV; Sunnerhagen P; Costa FTM
    Front Cell Infect Microbiol; 2018; 8():34. PubMed ID: 29473024
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Deciphering genetic regulation of CD14 by SP1 through characterization of peripheral blood mononuclear transcriptome of P. faiciparum and P. vivax infected malaria patients.
    Chakraborty B; Mondal P; Gajendra P; Mitra M; Das C; Sengupta S
    EBioMedicine; 2018 Nov; 37():442-452. PubMed ID: 30337251
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Challenges for Plasmodium vivax malaria elimination in the genomics era.
    Ferreira MU; de Oliveira TC
    Pathog Glob Health; 2015 May; 109(3):89-90. PubMed ID: 25943154
    [No Abstract]   [Full Text] [Related]  

  • 72. Natural antisense transcripts drive a regulatory cascade controlling c-MYC transcription.
    Napoli S; Piccinelli V; Mapelli SN; Pisignano G; Catapano CV
    RNA Biol; 2017 Dec; 14(12):1742-1755. PubMed ID: 28805496
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In silico analysis of putative dormancy genes in Plasmodium vivax.
    de Souza Ribeiro R; de Melo Resende D; Ruiz JC; Ferreira Alves de Brito C
    Acta Trop; 2018 Oct; 186():24-34. PubMed ID: 29959903
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Overexpression of hepatocyte EphA2 enhances liver-stage infection by Plasmodium vivax.
    Chainarin S; Jaihan U; Tapaopong P; Kongngen P; Kunkeaw N; Cui L; Sattabongkot J; Nguitragool W; Roobsoong W
    Sci Rep; 2022 Dec; 12(1):21542. PubMed ID: 36513700
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Strategies to identify natural antisense transcripts.
    Sun Y; Li D; Zhang R; Peng S; Zhang G; Yang T; Qian A
    Biochimie; 2017 Jan; 132():131-151. PubMed ID: 27894947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification of up-regulated and down-regulated cis-natural antisense transcripts in the human B lymphoblastic cell line IM-9 after X-ray irradiation.
    Chiba M; Miura T; Kasai K; Monzen S; Kashiwakura I; Yasue H; Nakamura T
    Mol Med Rep; 2012 May; 5(5):1151-7. PubMed ID: 22344488
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functional characterization of
    Won JY; Mazigo E; Cha SH; Han JH
    Front Cell Infect Microbiol; 2023; 13():1321240. PubMed ID: 38282613
    [No Abstract]   [Full Text] [Related]  

  • 78. Mechanistic binding insights for 1-deoxy-D-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax.
    Battistini MR; Shoji C; Handa S; Breydo L; Merkler DJ
    Protein Expr Purif; 2016 Apr; 120():16-27. PubMed ID: 26699947
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages.
    Schafer C; Dambrauskas N; Steel RW; Carbonetti S; Chuenchob V; Flannery EL; Vigdorovich V; Oliver BG; Roobsoong W; Maher SP; Kyle D; Sattabongkot J; Kappe SHI; Mikolajczak SA; Sather DN
    Malar J; 2018 Oct; 17(1):370. PubMed ID: 30333026
    [TBL] [Abstract][Full Text] [Related]  

  • 80. UTR introns, antisense RNA and differentially spliced transcripts between Plasmodium yoelii subspecies.
    Li J; Cai B; Qi Y; Zhao W; Liu J; Xu R; Pang Q; Tao Z; Hong L; Liu S; Leerkes M; Quiñones M; Su XZ
    Malar J; 2016 Jan; 15():30. PubMed ID: 26791272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.