BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 24121250)

  • 1. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.
    Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M
    N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for PHA production by mixed cultures and renewable waste materials.
    Serafim LS; Lemos PC; Albuquerque MG; Reis MA
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):615-28. PubMed ID: 19002455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.
    Oliveira CS; Silva CE; Carvalho G; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition.
    Duque AF; Oliveira CS; Carmo IT; Gouveia AR; Pardelha F; Ramos AM; Reis MA
    N Biotechnol; 2014 Jun; 31(4):276-88. PubMed ID: 24211366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production.
    Gurieff N; Lant P
    Bioresour Technol; 2007 Dec; 98(17):3393-403. PubMed ID: 17632000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations.
    Risch E; Loubet P; Núñez M; Roux P
    Water Res; 2014 Jun; 57():20-30. PubMed ID: 24704901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between mixed microbial culture composition and PHA production performance from fermented molasses.
    Carvalho G; Oehmen A; Albuquerque MG; Reis MA
    N Biotechnol; 2014 Jun; 31(4):257-63. PubMed ID: 24025669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced polyhydroxyalkanoate production from organic wastes via process control.
    Vargas A; Montaño L; Amaya R
    Bioresour Technol; 2014 Mar; 156():248-55. PubMed ID: 24508903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopolymers production from mixed cultures and pyrolysis by-products.
    Moita R; Lemos PC
    J Biotechnol; 2012 Feb; 157(4):578-83. PubMed ID: 21983233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for polyhydroxyalkanoate (PHA) accumulating bacteria selection under physical selective pressure.
    Chen Z; Guo Z; Wen Q; Huang L; Bakke R; Du M
    Int J Biol Macromol; 2015 Jan; 72():1329-34. PubMed ID: 25450834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.
    Moita Fidalgo R; Ortigueira J; Freches A; Pelica J; Gonçalves M; Mendes B; Lemos PC
    N Biotechnol; 2014 Jun; 31(4):297-307. PubMed ID: 24189432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of biopolymer production with process water treatment at a sugar factory.
    Anterrieu S; Quadri L; Geurkink B; Dinkla I; Bengtsson S; Arcos-Hernandez M; Alexandersson T; Morgan-Sagastume F; Karlsson A; Hjort M; Karabegovic L; Magnusson P; Johansson P; Christensson M; Werker A
    N Biotechnol; 2014 Jun; 31(4):308-23. PubMed ID: 24361532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population.
    Gouveia AR; Freitas EB; Galinha CF; Carvalho G; Duque AF; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):108-116. PubMed ID: 27422276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures.
    Moita R; Freches A; Lemos PC
    Water Res; 2014 Jul; 58():9-20. PubMed ID: 24731872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors.
    Wijeyekoon S; Carere CR; West M; Nath S; Gapes D
    Water Res; 2018 Sep; 140():1-11. PubMed ID: 29679930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater.
    Bengtsson S; Werker A; Christensson M; Welander T
    Bioresour Technol; 2008 Feb; 99(3):509-16. PubMed ID: 17360180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.
    Silva F; Campanari S; Matteo S; Valentino F; Majone M; Villano M
    N Biotechnol; 2017 Jul; 37(Pt A):90-98. PubMed ID: 27457131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHA production by mixed cultures: a way to valorize wastes from pulp industry.
    Queirós D; Rossetti S; Serafim LS
    Bioresour Technol; 2014 Apr; 157():197-205. PubMed ID: 24556373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.