BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24121561)

  • 1. Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA.
    Navarro-Whyte L; Kellie JL; Lenz SA; Wetmore SD
    Phys Chem Chem Phys; 2013 Nov; 15(44):19343-52. PubMed ID: 24121561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.
    Lenz SA; Kellie JL; Wetmore SD
    J Phys Chem B; 2015 Dec; 119(51):15601-12. PubMed ID: 26618397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis.
    Lenz SA; Kohout JD; Wetmore SD
    J Phys Chem B; 2016 Dec; 120(50):12795-12806. PubMed ID: 27933981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the thermodynamics and kinetics of the N-glycosidic bond cleavage in deoxythymidine glycol.
    Chen ZQ; Zhang CH; Xue Y
    J Phys Chem B; 2009 Jul; 113(30):10409-20. PubMed ID: 19719287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine.
    Shim EJ; Przybylski JL; Wetmore SD
    J Phys Chem B; 2010 Feb; 114(6):2319-26. PubMed ID: 20095611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the dissociative hydrolysis of the natural DNA nucleosides.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2010 Jan; 114(2):1104-13. PubMed ID: 20039632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1.
    Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.
    Kellie JL; Wilson KA; Wetmore SD
    Biochemistry; 2013 Dec; 52(48):8753-65. PubMed ID: 24168684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT Study on the Deglycosylation of Methylated, Oxidized, and Canonical Pyrimidine Nucleosides in Water: Implications for Epigenetic Regulation and DNA Repair.
    Jeong YER; Lenz SAP; Wetmore SD
    J Phys Chem B; 2020 Mar; 124(12):2392-2400. PubMed ID: 32108483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosine: base excision-repair mechanism of DNA by MutY.
    Tiwari S; Agnihotri N; Mishra PC
    J Phys Chem B; 2011 Mar; 115(12):3200-7. PubMed ID: 21384840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of damaged pyrimidines: formation of a Schiff base intermediate at the glycosidic bond of saturated dihydrouridine.
    Jian Y; Lin G; Chomicz L; Li L
    J Am Chem Soc; 2015 Mar; 137(9):3318-29. PubMed ID: 25671389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymidine glycol: the effect on DNA molecular structure and enzymatic processing.
    Dolinnaya NG; Kubareva EA; Romanova EA; Trikin RM; Oretskaya TS
    Biochimie; 2013 Feb; 95(2):134-47. PubMed ID: 23000318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of N--glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair.
    Chen ZQ; Liu XQ; Xue Y
    J Mol Model; 2014 Mar; 20(3):2168. PubMed ID: 24595719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excision by the human methylpurine DNA N-glycosylase of cyanuric acid, a stable and mutagenic oxidation product of 8-oxo-7,8-dihydroguanine.
    Dherin C; Gasparutto D; O'Connor TR; Cadet J; Boiteux S
    Int J Radiat Biol; 2004 Jan; 80(1):21-7. PubMed ID: 14761847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of thymine glycol by hNth1 and hNeil1 is modulated by base pairing and cis-trans epimerization.
    Ocampo-Hafalla MT; Altamirano A; Basu AK; Chan MK; Ocampo JE; Cummings A; Boorstein RJ; Cunningham RP; Teebor GW
    DNA Repair (Amst); 2006 Apr; 5(4):444-54. PubMed ID: 16446124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.