These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 24121618)
1. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Lin S; Buehler MJ Nanoscale; 2013 Dec; 5(23):11801-7. PubMed ID: 24121618 [TBL] [Abstract][Full Text] [Related]
2. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Xue M; Qiu H; Guo W Nanotechnology; 2013 Dec; 24(50):505720. PubMed ID: 24285308 [TBL] [Abstract][Full Text] [Related]
3. Graphyne as the membrane for water desalination. Kou J; Zhou X; Lu H; Wu F; Fan J Nanoscale; 2014; 6(3):1865-70. PubMed ID: 24356384 [TBL] [Abstract][Full Text] [Related]
4. Selective ion penetration of graphene oxide membranes. Sun P; Zhu M; Wang K; Zhong M; Wei J; Wu D; Xu Z; Zhu H ACS Nano; 2013 Jan; 7(1):428-37. PubMed ID: 23214493 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Xie M; Nghiem LD; Price WE; Elimelech M Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269 [TBL] [Abstract][Full Text] [Related]
6. Water permeation through single-layer graphyne membrane. Kou J; Zhou X; Chen Y; Lu H; Wu F; Fan J J Chem Phys; 2013 Aug; 139(6):064705. PubMed ID: 23947878 [TBL] [Abstract][Full Text] [Related]
7. Impact of graphyne on structural and dynamical properties of calmodulin. Feng M; Bell DR; Luo J; Zhou R Phys Chem Chem Phys; 2017 Apr; 19(15):10187-10195. PubMed ID: 28374026 [TBL] [Abstract][Full Text] [Related]
8. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization. Bartolomei M; Carmona-Novillo E; Hernández MI; Campos-Martínez J; Pirani F; Giorgi G; Yamashita K J Phys Chem Lett; 2014 Feb; 5(4):751-5. PubMed ID: 26270848 [TBL] [Abstract][Full Text] [Related]
9. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination. Raju M; Govindaraju PB; van Duin ACT; Ihme M Nanoscale; 2018 Feb; 10(8):3969-3980. PubMed ID: 29424378 [TBL] [Abstract][Full Text] [Related]
10. [Effect of different organic fraction on membrane flux declines]. Zhou XJ; Dong BZ Huan Jing Ke Xue; 2009 Feb; 30(2):432-8. PubMed ID: 19402494 [TBL] [Abstract][Full Text] [Related]
11. Efficient Removal of Heavy Metals from Aqueous Solutions through Functionalized γ-Graphyne-1 Membranes under External Uniform Electric Fields: Insights from Molecular Dynamics Simulations. Majidi S; Erfan-Niya H; Azamat J; Cruz-Chú ER; Walther JH J Phys Chem B; 2021 Nov; 125(44):12254-12263. PubMed ID: 34724377 [TBL] [Abstract][Full Text] [Related]
12. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. Bellona C; Drewes JE Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458 [TBL] [Abstract][Full Text] [Related]
13. Adsorption combined with ultrafiltration to remove organic matter from seawater. Tansakul C; Laborie S; Cabassud C Water Res; 2011 Dec; 45(19):6362-70. PubMed ID: 21996607 [TBL] [Abstract][Full Text] [Related]
14. Amyloid-carbon hybrid membranes for universal water purification. Bolisetty S; Mezzenga R Nat Nanotechnol; 2016 Apr; 11(4):365-71. PubMed ID: 26809058 [TBL] [Abstract][Full Text] [Related]
15. Assessing the effects of sodium hypochlorite exposure on the characteristics of PVDF based membranes. Abdullah SZ; Bérubé PR Water Res; 2013 Sep; 47(14):5392-9. PubMed ID: 23863391 [TBL] [Abstract][Full Text] [Related]
16. A three-dimensional carbon nanotube network for water treatment. Camilli L; Pisani C; Gautron E; Scarselli M; Castrucci P; D'Orazio F; Passacantando M; Moscone D; De Crescenzi M Nanotechnology; 2014 Feb; 25(6):065701. PubMed ID: 24434944 [TBL] [Abstract][Full Text] [Related]
17. Rejection of pharmaceuticals by forward osmosis membranes. Jin X; Shan J; Wang C; Wei J; Tang CY J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers. de Jubera AM; Gao Y; Moore JS; Cahill DG; Mariñas BJ Environ Sci Technol; 2012 Sep; 46(17):9592-9. PubMed ID: 22831486 [TBL] [Abstract][Full Text] [Related]
19. Cutting-edge developments in MXene-derived functional hybrid nanostructures: A promising frontier for next-generation water purification membranes. Rasheed T; Ferry DB; Iqbal ZF; Imran M; Usman M Chemosphere; 2024 Jun; 357():141955. PubMed ID: 38614403 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Yang HY; Han ZJ; Yu SF; Pey KL; Ostrikov K; Karnik R Nat Commun; 2013; 4():2220. PubMed ID: 23941894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]