BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24121688)

  • 1. CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation.
    Plasschaert RN; Vigneau S; Tempera I; Gupta R; Maksimoska J; Everett L; Davuluri R; Mamorstein R; Lieberman PM; Schultz D; Hannenhalli S; Bartolomei MS
    Nucleic Acids Res; 2014 Jan; 42(2):774-89. PubMed ID: 24121688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation.
    Gao J; Wang J; Wang Y; Dai W; Lu L
    PLoS One; 2011; 6(6):e20954. PubMed ID: 21695148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.
    Balakrishnan SK; Witcher M; Berggren TW; Emerson BM
    PLoS One; 2012; 7(8):e42424. PubMed ID: 22879976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features.
    Essien K; Vigneau S; Apreleva S; Singh LN; Bartolomei MS; Hannenhalli S
    Genome Biol; 2009; 10(11):R131. PubMed ID: 19922652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B cell differentiation is associated with reprogramming the CCCTC binding factor-dependent chromatin architecture of the murine MHC class II locus.
    Majumder P; Scharer CD; Choi NM; Boss JM
    J Immunol; 2014 Apr; 192(8):3925-35. PubMed ID: 24634495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF.
    Kung JT; Kesner B; An JY; Ahn JY; Cifuentes-Rojas C; Colognori D; Jeon Y; Szanto A; del Rosario BC; Pinter SF; Erwin JA; Lee JT
    Mol Cell; 2015 Jan; 57(2):361-75. PubMed ID: 25578877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions between NURF and Ctcf regulate gene expression.
    Qiu Z; Song C; Malakouti N; Murray D; Hariz A; Zimmerman M; Gygax D; Alhazmi A; Landry JW
    Mol Cell Biol; 2015 Jan; 35(1):224-37. PubMed ID: 25348714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF.
    Ciccone DN; Namiki Y; Chen C; Morshead KB; Wood AL; Johnston CM; Morris JW; Wang Y; Sadreyev R; Corcoran AE; Matthews AGW; Oettinger MA
    J Biol Chem; 2019 Sep; 294(37):13580-13592. PubMed ID: 31285261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries.
    Hsu SC; Gilgenast TG; Bartman CR; Edwards CR; Stonestrom AJ; Huang P; Emerson DJ; Evans P; Werner MT; Keller CA; Giardine B; Hardison RC; Raj A; Phillips-Cremins JE; Blobel GA
    Mol Cell; 2017 Apr; 66(1):102-116.e7. PubMed ID: 28388437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs.
    Glinsky GV
    Genome Biol Evol; 2015 May; 7(6):1432-54. PubMed ID: 25956794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTCF-mediated topological boundaries during development foster appropriate gene regulation.
    Narendra V; Bulajić M; Dekker J; Mazzoni EO; Reinberg D
    Genes Dev; 2016 Dec; 30(24):2657-2662. PubMed ID: 28087711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization.
    Ziebarth JD; Bhattacharya A; Cui Y
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D188-94. PubMed ID: 23193294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse.
    Kaaij LJT; Mohn F; van der Weide RH; de Wit E; Bühler M
    Cell; 2019 Sep; 178(6):1437-1451.e14. PubMed ID: 31491387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jpx RNA regulates CTCF anchor site selection and formation of chromosome loops.
    Oh HJ; Aguilar R; Kesner B; Lee HG; Kriz AJ; Chu HP; Lee JT
    Cell; 2021 Dec; 184(25):6157-6173.e24. PubMed ID: 34856126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing in 3D: the role of CTCF in cell differentiation.
    Arzate-Mejía RG; Recillas-Targa F; Corces VG
    Development; 2018 Mar; 145(6):. PubMed ID: 29567640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
    Holwerda SJ; de Laat W
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1620):20120369. PubMed ID: 23650640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites.
    Kang K; Chung JH; Kim J
    Nucleic Acids Res; 2009 Apr; 37(6):2003-13. PubMed ID: 19208640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTCF Binding Polarity Determines Chromatin Looping.
    de Wit E; Vos ES; Holwerda SJ; Valdes-Quezada C; Verstegen MJ; Teunissen H; Splinter E; Wijchers PJ; Krijger PH; de Laat W
    Mol Cell; 2015 Nov; 60(4):676-84. PubMed ID: 26527277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional diversity of CTCFs is encoded in their binding motifs.
    Fang R; Wang C; Skogerbo G; Zhang Z
    BMC Genomics; 2015 Aug; 16(1):649. PubMed ID: 26315019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CTCF and cohesin: linking gene regulatory elements with their targets.
    Merkenschlager M; Odom DT
    Cell; 2013 Mar; 152(6):1285-97. PubMed ID: 23498937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.