These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24121728)

  • 1. Reactive oxygen species production by catechol stabilized copper nanoparticles.
    Chen C; Ahmed I; Fruk L
    Nanoscale; 2013 Dec; 5(23):11610-4. PubMed ID: 24121728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallo-ROS in Alzheimer's disease: oxidation of neurotransmitters by CuII-beta-amyloid and neuropathology of the disease.
    da Silva GF; Ming LJ
    Angew Chem Int Ed Engl; 2007; 46(18):3337-41. PubMed ID: 17378003
    [No Abstract]   [Full Text] [Related]  

  • 3. Visual detection of miRNA using peroxidase-like catalytic activity of DNA-CuNCs and methylene blue as indicator.
    Borghei YS; Hosseini M; Ganjali MR
    Clin Chim Acta; 2018 Aug; 483():119-125. PubMed ID: 29704472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine.
    Ząbek-Adamska A; Drożdż R; Naskalski JW
    Acta Biochim Pol; 2013; 60(4):565-71. PubMed ID: 24340304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric sensor based on catechol-terminated mixed self-assembled monolayers modified gold nanoparticles for ultrasensitive detections of copper ions.
    Ye S; Shi X; Gu W; Zhang Y; Xian Y
    Analyst; 2012 Jul; 137(14):3365-71. PubMed ID: 22662323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection.
    Hu L; Yuan Y; Zhang L; Zhao J; Majeed S; Xu G
    Anal Chim Acta; 2013 Jan; 762():83-6. PubMed ID: 23327949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species.
    Dror I; Fink L; Weiner L; Berkowitz B
    Chemosphere; 2020 Nov; 258():127266. PubMed ID: 32535443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced degradation of methylene blue by a solution plasma process catalyzed by incidentally co-generated copper nanoparticles.
    Prasertsung I; Kaewcharoen S; Kunpinit K; Yaowarat W; Saito N; Phenrat T
    Water Sci Technol; 2019 Mar; 79(5):967-974. PubMed ID: 31025976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of plant-based phenol derivatives on the formation of Cu and Ag nanoparticles.
    Jacob JA; Biswas N; Mukherjee T; Kapoor S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):49-53. PubMed ID: 21621984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles.
    Fink L; Dror I; Berkowitz B
    Chemosphere; 2012 Jan; 86(2):144-9. PubMed ID: 22055313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles.
    Liu CH; Yu CJ; Tseng WL
    Anal Chim Acta; 2012 Oct; 745():143-8. PubMed ID: 22938619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of textile dye degradation due to the combined action of enzyme horseradish peroxidase and hydrogen peroxide.
    Pereira AR; da Costa RS; Yokoyama L; Alhadeff EM; Teixeira LA
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2741-7. PubMed ID: 25248990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the formation of CuS concave superstructures with peroxidase-like activity.
    He W; Jia H; Li X; Lei Y; Li J; Zhao H; Mi L; Zhang L; Zheng Z
    Nanoscale; 2012 Jun; 4(11):3501-6. PubMed ID: 22552534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles.
    Xiong J; Wu XD; Xue QJ
    J Colloid Interface Sci; 2013 Jan; 390(1):41-6. PubMed ID: 23068888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.
    Wang H; Huang Y
    J Hazard Mater; 2011 Jul; 191(1-3):163-9. PubMed ID: 21570769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical is not the main reactive species involved in the degradation of DNA bases by copper in the presence of hydrogen peroxide.
    Frelon S; Douki T; Favier A; Cadet J
    Chem Res Toxicol; 2003 Feb; 16(2):191-7. PubMed ID: 12588190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose.
    Chen W; Chen J; Feng YB; Hong L; Chen QY; Wu LF; Lin XH; Xia XH
    Analyst; 2012 Apr; 137(7):1706-12. PubMed ID: 22349179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics.
    Drozd M; Pietrzak M; Pytlos J; Malinowska E
    Anal Chim Acta; 2016 Dec; 948():80-89. PubMed ID: 27871613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles.
    Lee K; Lee H; Lee KW; Park TG
    Biomaterials; 2011 Apr; 32(10):2556-65. PubMed ID: 21247630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress.
    Dell'Acqua S; Bacchella C; Monzani E; Nicolis S; Di Natale G; Rizzarelli E; Casella L
    Inorg Chem; 2017 Sep; 56(18):11317-11325. PubMed ID: 28846410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.