These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24121728)

  • 21. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines.
    Song L; Connolly M; Fernández-Cruz ML; Vijver MG; Fernández M; Conde E; de Snoo GR; Peijnenburg WJ; Navas JM
    Nanotoxicology; 2014 Jun; 8(4):383-93. PubMed ID: 23600739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of magnetic recoverable nanosize Cu-Fe2O3/Fe photocatalysts.
    Kang HY; Wang HP
    Environ Sci Technol; 2013 Jul; 47(13):7380-7. PubMed ID: 23790076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH.
    Schweigert N; Acero JL; von Gunten U; Canonica S; Zehnder AJ; Eggen RI
    Environ Mol Mutagen; 2000; 36(1):5-12. PubMed ID: 10918354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.
    Hedberg J; Karlsson HL; Hedberg Y; Blomberg E; Odnevall Wallinder I
    Colloids Surf B Biointerfaces; 2016 May; 141():291-300. PubMed ID: 26859121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable surface charge of ZnS:Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater.
    Wang Y; Chen D; Wang Y; Huang F; Hu Q; Lin Z
    Nanoscale; 2012 Jun; 4(12):3665-8. PubMed ID: 22618852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling the Mechanistic Understanding of Metal Nanoparticle-Induced Reactive Oxygen Species Formation: Insights from a Cu Nanoparticle Study.
    Kessler A; Huang P; Blomberg E; Odnevall I
    Chem Res Toxicol; 2023 Dec; 36(12):1891-1900. PubMed ID: 37948660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction.
    Lin Y; Chen C; Wang C; Pu F; Ren J; Qu X
    Chem Commun (Camb); 2011 Jan; 47(4):1181-3. PubMed ID: 21082144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage.
    Pramanik A; Laha D; Bhattacharya D; Pramanik P; Karmakar P
    Colloids Surf B Biointerfaces; 2012 Aug; 96():50-5. PubMed ID: 22521682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles.
    Shi M; Kwon HS; Peng Z; Elder A; Yang H
    ACS Nano; 2012 Mar; 6(3):2157-64. PubMed ID: 22390268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity.
    Wang Z; Li N; Zhao J; White JC; Qu P; Xing B
    Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide.
    Ghattas W; Giorgi M; Mekmouche Y; Tanaka T; Rockenbauer A; Réglier M; Hitomi Y; Simaan AJ
    Inorg Chem; 2008 Jun; 47(11):4627-38. PubMed ID: 18442237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem.
    Fu J; Shao Y; Wang L; Zhu Y
    Nanoscale; 2015 Apr; 7(16):7275-83. PubMed ID: 25813671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation.
    Gupte A; Mumper RJ
    J Inorg Biochem; 2007 Apr; 101(4):594-602. PubMed ID: 17275091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment.
    Pandey NK; Chudal L; Phan J; Lin L; Johnson O; Xing M; Liu JP; Li H; Huang X; Shu Y; Chen W
    J Mater Chem B; 2019 Nov; 7(42):6630-6642. PubMed ID: 31591609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species scavenging properties of ZrO2-CeO2 solid solution nanoparticles.
    Tsai YY; Oca-Cossio J; Lin SM; Woan K; Yu PC; Sigmund W
    Nanomedicine (Lond); 2008 Oct; 3(5):637-45. PubMed ID: 18817467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli.
    Cui Y; Zhao Y; Tian Y; Zhang W; Lü X; Jiang X
    Biomaterials; 2012 Mar; 33(7):2327-33. PubMed ID: 22182745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.