BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24121866)

  • 1. Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus.
    Jiang L; Wei J; Li L; Niu G; Tan H
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10469-77. PubMed ID: 24121866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Functional characterization of gouC and gouD in gougerotin biosynthesis].
    Wei J; Zhang J; Jiang L; Tan H; Niu G
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):406-17. PubMed ID: 27382784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters.
    Du D; Zhu Y; Wei J; Tian Y; Niu G; Tan H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6383-96. PubMed ID: 23515837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis.
    Niu G; Li L; Wei J; Tan H
    Chem Biol; 2013 Jan; 20(1):34-44. PubMed ID: 23352137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus.
    Wei J; Tian Y; Niu G; Tan H
    Appl Environ Microbiol; 2014 Jan; 80(2):714-22. PubMed ID: 24242236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011.
    Mo S; Lee SK; Jin YY; Oh CH; Suh JW
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):3053-62. PubMed ID: 23053074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576.
    Zheng J; Li Y; Guan H; Zhang J; Tan H
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2263-2275. PubMed ID: 30685809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces.
    Du D; Wang L; Tian Y; Liu H; Tan H; Niu G
    Sci Rep; 2015 Mar; 5():8740. PubMed ID: 25737113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of new lipopentapeptides by an engineered strain of Streptomyces sp.
    Jin X; Rao M; Wei W; Ge M; Liu J; Chen D; Liang Y
    Biotechnol Lett; 2012 Dec; 34(12):2283-9. PubMed ID: 22941370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production.
    Liu P; Zhu H; Zheng G; Jiang W; Lu Y
    Sci China Life Sci; 2017 Sep; 60(9):948-957. PubMed ID: 28785950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of distinct labdane-type diterpenoids using a novel cryptic labdane-like cluster from Streptomyces thermocarboxydus K155.
    Guzmán-Trampe SM; Ikeda H; Vinuesa P; Macías-Rubalcava ML; Esquivel B; Centeno-Leija S; Tapia-Cabrera SM; Mora-Herrera SI; Ruiz-Villafán B; Rodríguez-Sanoja R; Sanchez S
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):741-750. PubMed ID: 31807886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of wblA-dependent tmcT regulation during tautomycetin biosynthesis in Streptomyces sp. CK4412.
    Nah JH; Park SH; Yoon HM; Choi SS; Lee CH; Kim ES
    Biotechnol Adv; 2012; 30(1):202-9. PubMed ID: 21624452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production.
    Liao G; Li J; Li L; Yang H; Tian Y; Tan H
    Microb Cell Fact; 2010 Jan; 9():6. PubMed ID: 20096125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes.
    Li L; Wei K; Liu X; Wu Y; Zheng G; Chen S; Jiang W; Lu Y
    Metab Eng; 2019 Mar; 52():153-167. PubMed ID: 30529239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics.
    Qi J; Liu J; Wan D; Cai YS; Wang Y; Li S; Wu P; Feng X; Qiu G; Yang SP; Chen W; Deng Z
    Biotechnol Bioeng; 2015 Sep; 112(9):1865-71. PubMed ID: 25827606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering.
    Gao W; Wu Z; Sun J; Ni X; Xia H
    PLoS One; 2017; 12(7):e0181971. PubMed ID: 28753625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Streptomyces hygroscopicus cell factories with enhanced ascomycin production by combined elicitation and pathway-engineering strategies.
    Wang C; Wang J; Yuan J; Jiang L; Jiang X; Yang B; Zhao G; Liu B; Huang D
    Biotechnol Bioeng; 2019 Dec; 116(12):3382-3395. PubMed ID: 31478187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters.
    Eustáquio AS; Gust B; Galm U; Li SM; Chater KF; Heide L
    Appl Environ Microbiol; 2005 May; 71(5):2452-9. PubMed ID: 15870333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of FK506 production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis.
    Wu QB; Zhang XY; Chen XA; Li YQ
    Microb Cell Fact; 2021 Aug; 20(1):166. PubMed ID: 34425854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement.
    Huang D; Li S; Xia M; Wen J; Jia X
    Microb Cell Fact; 2013 May; 12():52. PubMed ID: 23705993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.