These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24121980)

  • 1. Rough contact is not always bad for interfacial energy coupling.
    Zhang J; Wang Y; Wang X
    Nanoscale; 2013 Dec; 5(23):11598-603. PubMed ID: 24121980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering.
    Hong Y; Li L; Zeng XC; Zhang J
    Nanoscale; 2015 Apr; 7(14):6286-94. PubMed ID: 25784494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces.
    Tang X; Xu S; Zhang J; Wang X
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2809-18. PubMed ID: 24476126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene.
    Chen J; Zhang G; Li B
    Nanoscale; 2013 Jan; 5(2):532-6. PubMed ID: 23223896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene.
    Spear JC; Custer JP; Batteas JD
    Nanoscale; 2015 Jun; 7(22):10021-9. PubMed ID: 25899217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrugation in exfoliated graphene: an electron microscopy and diffraction study.
    Locatelli A; Knox KR; Cvetko D; Menteş TO; Niño MA; Wang S; Yilmaz MB; Kim P; Osgood RM; Morgante A
    ACS Nano; 2010 Aug; 4(8):4879-89. PubMed ID: 20681631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles.
    Lee J; Shim S; Kim B; Shin HS
    Chemistry; 2011 Feb; 17(8):2381-7. PubMed ID: 21264961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water molecule clusters measured at water/air interfaces using atomic force microscopy.
    Teschke O; de Souza EF
    Phys Chem Chem Phys; 2005 Nov; 7(22):3856-65. PubMed ID: 16358037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering electronic properties of graphene by coupling with Si-rich, two-dimensional islands.
    Lee DH; Yi J; Lee JM; Lee SJ; Doh YJ; Jeong HY; Lee Z; Paik U; Rogers JA; Park WI
    ACS Nano; 2013 Jan; 7(1):301-7. PubMed ID: 23234234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene as an atomically thin barrier to Cu diffusion into Si.
    Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T
    Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwetting of supported graphene on hydrophobic surfaces revealed by polymerized interfacial femtodroplets.
    Peng S; Lohse D; Zhang X
    Langmuir; 2014 Aug; 30(33):10043-9. PubMed ID: 25087703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study.
    Zhao S; Xue J; Wang Y; Yan S
    Nanotechnology; 2012 Jul; 23(28):285703. PubMed ID: 22728427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction force on slow charges moving over supported graphene.
    Allison KF; Misković ZL
    Nanotechnology; 2010 Apr; 21(13):134017. PubMed ID: 20208100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.
    Repovsky D; Jane E; Palszegi T; Slobodnik M; Velic D
    Chemphyschem; 2013 Oct; 14(15):3569-80. PubMed ID: 24039042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge inhomogeneity determines oxidative reactivity of graphene on substrates.
    Yamamoto M; Einstein TL; Fuhrer MS; Cullen WG
    ACS Nano; 2012 Sep; 6(9):8335-41. PubMed ID: 22917254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.