These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 24122128)

  • 1. Strong anti-ice ability of nanohairs over micro-ratchet structures.
    Guo P; Wen M; Wang L; Zheng Y
    Nanoscale; 2014 Apr; 6(8):3917-20. PubMed ID: 24122128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice.
    Shen X; Chen L; Li D; Zhu L; Wang H; Liu C; Wang Y; Xiong Q; Chen H
    ACS Nano; 2011 Oct; 5(10):8426-33. PubMed ID: 21942743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing activities of flavonoids in solutions containing different ice nucleators.
    Kuwabara C; Wang D; Kasuga J; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2012 Jun; 64(3):279-85. PubMed ID: 22406212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces.
    Charpentier TV; Neville A; Millner P; Hewson RW; Morina A
    J Colloid Interface Sci; 2013 Mar; 394():539-44. PubMed ID: 23245630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic ice banding in freezing colloidal dispersions.
    Anderson AM; Worster MG
    Langmuir; 2012 Dec; 28(48):16512-23. PubMed ID: 23110707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why superhydrophobic surfaces are not always icephobic.
    Nosonovsky M; Hejazi V
    ACS Nano; 2012 Oct; 6(10):8488-91. PubMed ID: 23009385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic slippery extreme icephobic surfaces.
    Irajizad P; Hasnain M; Farokhnia N; Sajadi SM; Ghasemi H
    Nat Commun; 2016 Nov; 7():13395. PubMed ID: 27824053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size- and dimensionality-dependent thermodynamic properties of ice nanocrystals.
    Han YY; Shuai J; Lu HM; Meng XK
    J Phys Chem B; 2012 Feb; 116(5):1651-4. PubMed ID: 22251366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze avoidance: a dehydrating moss gathers no ice.
    Lenné T; Bryant G; Hocart CH; Huang CX; Ball MC
    Plant Cell Environ; 2010 Oct; 33(10):1731-41. PubMed ID: 20525002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control.
    Schiffres SN; Harish S; Maruyama S; Shiomi J; Malen JA
    ACS Nano; 2013 Dec; 7(12):11183-9. PubMed ID: 24195487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ice growth rate on the measured Workman-Reynolds freezing potential between ice and dilute NaCl solutions.
    Wilson PW; Haymet AD
    J Phys Chem B; 2010 Oct; 114(39):12585-8. PubMed ID: 20839818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hold time after extracellular ice formation on intracellular freezing of mouse oocytes.
    Mazur P; Pinn IL; Seki S; Kleinhans FW; Edashige K
    Cryobiology; 2005 Oct; 51(2):235-9. PubMed ID: 16126189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.