BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 2412226)

  • 1. Differentiation-specific regulation of Schwann cell expression of the major myelin glycoprotein.
    Poduslo JF; Windebank AJ
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5987-91. PubMed ID: 2412226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of myelination: biosynthesis of the major myelin glycoprotein by Schwann cells in the presence and absence of myelin assembly.
    Poduslo JF
    J Neurochem; 1984 Feb; 42(2):493-503. PubMed ID: 6198464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal delivery of the major myelin glycoprotein in the absence of myelin assembly: posttranslational regulation of the level of expression by Schwann cells.
    Brunden KR; Poduslo JF
    J Cell Biol; 1987 Mar; 104(3):661-9. PubMed ID: 2434515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of myelination: axons not required for the biosynthesis of basal levels of the major myelin glycoprotein by Schwann cells in denervated distal segments of the adult cat sciatic nerve.
    Poduslo JF; Berg CT; Ross SM; Spencer PS
    J Neurosci Res; 1985; 14(2):177-85. PubMed ID: 2413224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolic regulation of the expression of the major myelin glycoprotein by Schwann cells in culture.
    Brunden KR; Windebank AJ; Poduslo JF
    J Neurochem; 1990 Feb; 54(2):459-66. PubMed ID: 1688919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P0 gene expression in Schwann cells is modulated by an increase of cAMP which is dependent on the presence of axons.
    LeBlanc AC; Windebank AJ; Poduslo JF
    Brain Res Mol Brain Res; 1992 Jan; 12(1-3):31-8. PubMed ID: 1372071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of axons in the regulation of P0 biosynthesis by Schwann cells.
    Brunden KR; Windebank AJ; Poduslo JF
    J Neurosci Res; 1990 Jun; 26(2):135-43. PubMed ID: 1694900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational protein modification: biosynthetic control mechanisms in the glycosylation of the major myelin glycoprotein by Schwann cells.
    Poduslo JF
    J Neurochem; 1985 Apr; 44(4):1194-206. PubMed ID: 2579205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P0 mRNA expression in cultures of Schwann cells and neurons that lack basal lamina and myelin.
    Brunden KR; Brown DT
    J Neurosci Res; 1990 Oct; 27(2):159-68. PubMed ID: 1701492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly.
    Poduslo JF; Berg CT; Dyck PJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1864-6. PubMed ID: 6584919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection.
    Poduslo JF; Dyck PJ; Berg CT
    J Neurochem; 1985 Feb; 44(2):388-400. PubMed ID: 2578177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of myelin P0 glycoprotein synthesis in cultured rat Schwann cells and continuous rat PNS cell lines.
    Kreider B; Zeller N; Lazzarini R; Shuman S; Pleasure D
    J Neurochem; 1988 Aug; 51(2):566-71. PubMed ID: 2455775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P0 gene expression in cultured Schwann cells.
    Morrison S; Mitchell LS; Ecob-Prince MS; Griffiths IR; Thomson CE; Barrie JA; Kirkham D
    J Neurocytol; 1991 Sep; 20(9):769-80. PubMed ID: 1720451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased P0 glycoprotein gene expression in primary and transfected rat Schwann cells after treatment with axolemma-enriched fraction.
    Knight RM; Fossom LH; Neuberger TJ; Attema BL; Tennekoon G; Bharucha V; DeVries GH
    J Neurosci Res; 1993 May; 35(1):38-45. PubMed ID: 7685396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression in the presence or absence of myelin assembly.
    LeBlanc AC; Poduslo JF; Mezei C
    Brain Res; 1987 Apr; 388(1):57-67. PubMed ID: 2438000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal modulation of myelin gene expression in the peripheral nerve.
    LeBlanc AC; Poduslo JF
    J Neurosci Res; 1990 Jul; 26(3):317-26. PubMed ID: 1697906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively.
    Lee M; Brennan A; Blanchard A; Zoidl G; Dong Z; Tabernero A; Zoidl C; Dent MA; Jessen KR; Mirsky R
    Mol Cell Neurosci; 1997; 8(5):336-50. PubMed ID: 9073396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative regulation of the P0 gene in Schwann cells: suppression of P0 mRNA and protein induction in cultured Schwann cells by FGF2 and TGF beta 1, TGF beta 2 and TGF beta 3.
    Morgan L; Jessen KR; Mirsky R
    Development; 1994 Jun; 120(6):1399-409. PubMed ID: 7519543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition.
    Morgan L; Jessen KR; Mirsky R
    J Cell Biol; 1991 Feb; 112(3):457-67. PubMed ID: 1704008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves.
    Jessen KR; Mirsky R; Morgan L
    J Neurosci; 1987 Oct; 7(10):3362-9. PubMed ID: 3668631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.