BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24122315)

  • 1. Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast.
    Yuan J; Ching CB
    Biotechnol Bioeng; 2014 Mar; 111(3):608-17. PubMed ID: 24122315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway].
    Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae.
    Yuan J; Ching CB
    Microb Cell Fact; 2015 Mar; 14():38. PubMed ID: 25889168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.
    Yuan J; Ching CB
    ACS Synth Biol; 2015 Jan; 4(1):23-31. PubMed ID: 24847678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.
    Martin VJ; Pitera DJ; Withers ST; Newman JD; Keasling JD
    Nat Biotechnol; 2003 Jul; 21(7):796-802. PubMed ID: 12778056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production.
    Mukherjee M; Blair RH; Wang ZQ
    Metab Eng; 2022 Nov; 74():139-149. PubMed ID: 36341776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes.
    Yamamoto K; Hara KY; Morita T; Nishimura A; Sasaki D; Ishii J; Ogino C; Kizaki N; Kondo A
    Microb Cell Fact; 2016 Sep; 15(1):155. PubMed ID: 27624332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.
    Sonntag F; Kroner C; Lubuta P; Peyraud R; Horst A; Buchhaupt M; Schrader J
    Metab Eng; 2015 Nov; 32():82-94. PubMed ID: 26369439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production.
    Song AA; Abdullah JO; Abdullah MP; Shafee N; Othman R; Noor NM; Rahim RA
    FEMS Microbiol Lett; 2014 Jun; 355(2):177-84. PubMed ID: 24828482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.
    Tsuruta H; Paddon CJ; Eng D; Lenihan JR; Horning T; Anthony LC; Regentin R; Keasling JD; Renninger NS; Newman JD
    PLoS One; 2009; 4(2):e4489. PubMed ID: 19221601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted proteomics for metabolic pathway optimization: application to terpene production.
    Redding-Johanson AM; Batth TS; Chan R; Krupa R; Szmidt HL; Adams PD; Keasling JD; Lee TS; Mukhopadhyay A; Petzold CJ
    Metab Eng; 2011 Mar; 13(2):194-203. PubMed ID: 21215324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.
    Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T
    Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.
    Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building terpene production platforms in yeast.
    Zhuang X; Chappell J
    Biotechnol Bioeng; 2015 Sep; 112(9):1854-64. PubMed ID: 25788404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Production of amorpha-4,11-diene in engineered yeasts].
    Kong JQ; Shen JH; Huang Y; Wang W; Cheng KD; Zhu P
    Yao Xue Xue Bao; 2009 Nov; 44(11):1297-303. PubMed ID: 21355330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a multi-gene expression system in Xanthophyllomyces dendrorhous.
    Hara KY; Morita T; Mochizuki M; Yamamoto K; Ogino C; Araki M; Kondo A
    Microb Cell Fact; 2014 Dec; 13():175. PubMed ID: 25471659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.
    Yuan J; Ching CB
    Metab Eng; 2016 Nov; 38():303-309. PubMed ID: 27471067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building a machine-learning model to predict optimal mevalonate pathway gene expression levels for efficient production of a carotenoid in yeast.
    Shimazaki S; Yamada R; Yamamoto Y; Matsumoto T; Ogino H
    Biotechnol J; 2024 Jan; 19(1):e2300285. PubMed ID: 37953664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.