These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24122322)
1. Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Lima MJ; Pirraco RP; Sousa RA; Neves NM; Marques AP; Bhattacharya M; Correlo VM; Reis RL Biomed Microdevices; 2014 Feb; 16(1):69-78. PubMed ID: 24122322 [TBL] [Abstract][Full Text] [Related]
2. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
3. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097 [TBL] [Abstract][Full Text] [Related]
4. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related]
8. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
9. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. Mathews A; Colombus S; Krishnan VK; Krishnan LK J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434 [TBL] [Abstract][Full Text] [Related]
11. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. Guduric V; Metz C; Siadous R; Bareille R; Levato R; Engel E; Fricain JC; Devillard R; Luzanin O; Catros S J Mater Sci Mater Med; 2017 May; 28(5):78. PubMed ID: 28386854 [TBL] [Abstract][Full Text] [Related]
12. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
13. Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Santos MI; Fuchs S; Gomes ME; Unger RE; Reis RL; Kirkpatrick CJ Biomaterials; 2007 Jan; 28(2):240-8. PubMed ID: 16945411 [TBL] [Abstract][Full Text] [Related]
14. Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Rodrigues AI; Gomes ME; Leonor IB; Reis RL Acta Biomater; 2012 Oct; 8(10):3765-76. PubMed ID: 22659174 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
16. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
19. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
20. Micropatterning electrospun scaffolds to create intrinsic vascular networks. Jeffries EM; Nakamura S; Lee KW; Clampffer J; Ijima H; Wang Y Macromol Biosci; 2014 Nov; 14(11):1514-20. PubMed ID: 25142314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]