These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR; Vetter RJ; Williams JC; Hetke JF IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [TBL] [Abstract][Full Text] [Related]
5. 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. Shulyzki R; Abdelhalim K; Bagheri A; Salam MT; Florez CM; Velazquez JL; Carlen PL; Genov R IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):34-49. PubMed ID: 25486647 [TBL] [Abstract][Full Text] [Related]
6. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
7. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Wei XF; Grill WM J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection. Chuang MC; Lai HY; Annie Ho JA; Chen YY Biosens Bioelectron; 2013 Mar; 41():602-7. PubMed ID: 23083904 [TBL] [Abstract][Full Text] [Related]
9. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W; Yoshida K; Hofmann UG IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [TBL] [Abstract][Full Text] [Related]
10. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825 [TBL] [Abstract][Full Text] [Related]
11. A modular 256-channel micro electrode array platform for in vitro and in vivo neural stimulation and recording: BioMEA. Charvet G; Billoint O; Gharbi S; Heuschkel M; Georges C; Kauffmann T; Pellissier A; Yvert B; Guillemaud R Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1804-7. PubMed ID: 21095937 [TBL] [Abstract][Full Text] [Related]
12. Impedance characterization of microarray recording electrodes in vitro. Merrill DR; Tresco PA IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400 [TBL] [Abstract][Full Text] [Related]
13. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
14. Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays. Zhu G; Li X; Pu J; Chen W; Luo Q Biomed Microdevices; 2010 Feb; 12(1):153-8. PubMed ID: 19937128 [TBL] [Abstract][Full Text] [Related]
15. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106 [TBL] [Abstract][Full Text] [Related]
16. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
17. Novel glass microprobe arrays for neural recording. Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175 [TBL] [Abstract][Full Text] [Related]
18. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. Johnson MD; Otto KJ; Kipke DR IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):160-5. PubMed ID: 16003894 [TBL] [Abstract][Full Text] [Related]
19. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
20. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. Vasudevan S; Patel K; Welle C J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]